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Abstract— Variable bit rate compressed video traffic is ex-
pected to be a significant component of the traffic mix in
integrated services networks. This traffic is hard to manage
because it has strict delay and loss requirements while si-
multaneously exhibiting burstiness at multiple time-scales.
‘We show that burstiness over long time-scales, in conjunc-
tion with resource reservation using one-shot traffic descrip-
tors, can substantially degrade the loss rate, end-to-end de-
lay and statistical multiplexing gain of a connection. We use
large-deviation theory to model the performance of multiple
time-scale traffic and to motivate the design of Renegotiated
Constant Bit Rate (RCBR) Service.

Sources using RCBR service are presented with an ab-
straction of a fixed-size buffer which is drained at a constant
rate. They may renegotiate the drain rate to match their
workload. Because all traffic entering the network is CBR,
RCBR requires minimal buffering and scheduling support
in switches. We show that the service is suitable for both
stored and online video sources.

An RCBR source must decide when to renegotiate its
service rate, and what the new service rate should be. We
present a) an algorithm to compute the optimal renegoti-
ation schedule for stored (off-line) traffic, and b) a heuris-
tic to approximate the optimal schedule for online traffic.
We also discuss measurement-based admission control for
RCBR traffic.

Simulation experiments show that RCBR is able to ex-
tract almost all of the statistical multiplexing gain available
by exploiting slow time-scale variations in traffic. Moreover,
simple admission control schemes are sufficient to keep the
renegotiation failure probability below a small threshold,
while still offering high link utilization. Thus, we believe
that RCBR is a simple, practical, and effective service for
carrying multiple time-scale traffic.

Keywords— Compressed video, renegotiation, variable bit-
rate service, multiple time-scales.

I. INTRODUCTION

IDEO traffic is expected to be a significant compo-
nent of the traffic mix in integrated services networks.
Video is invariably compressed with either constant quality
(and variable bit rate) or constant bit rate (and variable
quality). Constant bit rate compressed video, which is pre-
dominant in current networks, may exhibit visual glitches
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in information-rich scenes. To minimize these glitches, the
coding rate has to be large enough to encode all but a few
of the scenes in the video stream, leading to a reduction in
the available statistical multiplexing gain [44]. This has led
to great interest in variable bit rate video compression, and
techniques for carrying such traffic in computer networks
161, 171, [32], [33], [29], [1]. *

A key characteristic of a compressed video source is its
burstiness. A bursty source occasionally transmits at a
peak rate significantly larger than its long term average
rate. Recent research has determined another key char-
acteristic: the presence of traffic variations over multiple
time-scales [34], [35], [12], [13]. Intuitively, there is a vari-
ation in source rate not only over a period of milliseconds
to seconds, corresponding to variations within a scene, but
also over a period of tens of seconds to minutes, correspond-
ing to scenes with differing information content. Taken to-
gether, these facts imply that a compressed video source
can transmit at its peak rate over multiple time scales.

We discuss in Section 2 how burstiness at multiple time
scales, in conjunction with a traditional one-shot traffic
descriptor (such as a leaky bucket), leads to performance
problems. Instead, we argue that a renegotiated service
best addresses the presence of burstiness over multiple
time-scales. This motivates the design of Renegotiated
Constant Bit Rate (RCBR) service for carrying compressed
video traffic. Sources using RCBR service are presented
with an abstraction of a fixed-size buffer drained at a con-
stant bit rate called the drain rate. Sources choose the
drain rate to match their current short-term average rate
and renegotiate this rate in response to changes in their
workload. Because all traffic entering the network is CBR,
RCBR requires minimal buffering and scheduling support
in switches. We show in Section 3 that the service is suit-
able for both stored and online video sources and that its
signaling overhead is likely to be manageable with current
technology. Note that RCBR is the simplest possible rene-
gotiated service.

An RCBR source must determine when to renegotiate
and what rate to choose during a renegotiation. These de-
cisions constitute a per-source renegotiation schedule. We
present algorithms for choosing renegotiation schedules in
Section 4.

We evaluate RCBR both analytically and through simu-
lation. Qur results in Section 5 indicate that RCBR allows
a network operator to extract almost all of the statistical
multiplexing gain achievable by multiplexing large numbers

1For notational convenience, we will refer to a variable bit rate
compressed video source simply as a ‘compressed video source’.



of compressed video sources. For example, if an MPEG-1
compressed version of the “Star Wars” movie is transferred
through our service, and if the average service rate over the
lifetime of the connection is 5% above the average source
rate of 374kbps, then 300kbit worth of buffering at the end-
system and an average renegotiation interval of about 12s
are sufficient for RCBR. In contrast, a non-renegotiated
service with the same service rate would require about
100Mbit of buffering at the end-system (cf. Fig. 5).

A natural question is how to admit RCBR sources
into the network while still allowing network operators to
stochastically bound performance metrics such as the rene-
gotiation failure probability and link utilization. We dis-
cuss simple measurement-based admission control schemes
suitable for RCBR sources in Section 6. We show that a
memoryless scheme is not robust. We advocate the use of
memory, i.e., history about the past bandwidth of calls, to
achieve satisfactory robustness.

While our focus is on compressed video traffic, our re-
sults are applicable to multiple time-scale traffic in general.
Sections 7 and 8 present related work and place our work
in context of other services for carrying variable bit rate
traffic.

II. PERFORMANCE PROBLEMS FOR MULTIPLE
TIME-SCALE SOURCES

It has been observed by several researchers [34], [35],
[12], [13] that compressed video traffic typically exhibits
burstiness over multiple time-scales. While the short term
burstiness of MPEG sources due to the I, B, and P frame
structure is well known, they have found fairly long dura-
tion, as long as 30 seconds, when the data rate of the video
source is continuously near its peak rate. This is due to
scenes with considerable motion or rapid chrominance and
luminance changes such as those caused by flashing lights,
where, independent of the coding algorithm, the coder gen-
erates traffic near its peak rate. Unfortunately, these peak
rates are much higher than the long term average rate. For
example, we find that for an MPEG-1 compressed version
of the “Star Wars” movie, there are episodes where a sus-
tained peak of five times the long term average rate lasts
over 10 seconds.

Compressed video traffic is expected to be carried in
ATM networks using either CBR or VBR service, and in
the Integrated Services Internet using Guaranteed Service
[5] (The Integrated Services Internet also allows for a VBR-
like Controlled Load service, but this service is too impre-
cisely defined at the time of this writing to map to any of
the ATM classes. Therefore, our remarks apply only to the
Internet’s Guaranteed Service class.) With CBR service, a
source is restricted to a bit rate that it chooses at the time
of connection setup. With VBR or Guaranteed Service, the
source chooses both a token bucket size and a token rate.
These correspond roughly to the largest size burst allowed
from the source into the network and its long-term average
rate.

We model all three services as follows. Traffic from a
source is queued at a buffer at the end-system, and the

network drains the buffer at a given drain rate. The drain
rate for a CBR source is the connection rate, and for a VBR
or Guaranteed Service source is the token rate. With VBR
service, data may leave the buffer at a rate greater than
the drain rate if the token bucket is non-empty. The key
fact is that with a non-renegotiated service, as is the case
in both ATM and Integrated Services Internet proposals, a
source chooses the drain rate exactly once, at the time of
connection establishment. (The Integrated Services Inter-
net proposal— specifically the RSVP resource reservation
protocol— does require a source to periodically refresh its
reserved rate, and renegotiation could be piggybacked with
a refresh. However, refreshes are currently viewed primar-
ily as a mechanism for state management, rather than for
rate adaptation. Sources are therefore expected to choose
a token rate once and to merely repeat this request when
refreshing their reservation [49]).

If sources exhibiting bursts at multiple time scales are
allowed only a single drain rate to describe their behav-
ior, they are faced with a series of poor choices. Assume,
for the moment, that the drain rate is chosen close to the
long term average rate in order to maximize the statistical
multiplexing gain in the network. Then, during sustained
peaks, the source buffer fills up at the peak rate and is
drained at the drain rate. If the peak rate is much higher
than the average rate, either the data buffer has to be very
large, or the loss rate will be unacceptably high. If the
loss rate is made small by provisioning large data buffers,
this leads to expensive buffers at end-systems and long de-
lays for the sources. Even if the data buffering costs are
not excessive, the ensuing delays may not be tolerable for
interactive applications.

With VBR or Guaranteed service, we can deal with sus-
tained bursts by choosing a large token bucket, thus ad-
mitting part or all of the burst into the network. We
call this the unrestricted sharing approach to dealing with
bursts. The problem with this approach is that unless in-
termediate switches and the receiver have large data buffers
(which, in some cases, may need to be on the order of tens
of megabytes), sources have no assurance that their data
will not be lost if bursts coincide. We call this loss of pro-
tection. Providing protection with unrestricted sharing is
expensive and can potentially lead to excessive queueing
delays. Note that there is a tradeoff between the drain
rate and the largest-size burst that may enter the network.
A source can minimize delay and reduce the probability of
cell loss, but only at the expense of a reduced statistical
multiplexing gain.

Thus, burstiness at slow time-scales with a non-
renegotiated drain rate leads either to a) loss of statis-
tical multiplexing gain, b) large data loss rate, c) large
buffers in end systems or switches, leading to delays and
expensive line cards or d) loss of protection. Current (non-
renegotiated) services cannot simultaneously avoid all four
problems because sustained peaks in workload are not ad-
equately captured by a static descriptor, such as a leaky
bucket. We argue that these peaks are better captured
by renegotiation of the drain rate at a slower time-scale.



A more detailed discussion of the effectiveness of renego-
tiation in solving these problems can be found in Section
VIIL.

III. THE RCBR SCHEME
A. RCBR Service Description

With static CBR service, during call setup, a source re-
quests a constant bandwidth from the network [24], [25].
Because a source is described by a single number, the ad-
mission control test is trivial. Moreover, because traffic
entering the network is smooth, internal buffers can be
small and packet scheduling need only be FIFO [17]. With
RCBR, a source can renegotiate its service rate. Renego-
tiation consists of sending a signaling message requesting
an increase or decrease in the current service rate. If the
request is feasible, the network allows the renegotiation.
Upon successful completion of the request, the source is
free to send data at the new CBR rate. RCBR therefore
retains the simplicity and small buffer requirements of CBR
service.

Renegotiation failure What happens if a renegotia-
tion fails? A trivial solution is to try again. Of course, data
will build up in the source’s data buffer while the second
request proceeds and there is the possibility of excessive
delay, and even data loss. This may not be acceptable for
some sources. Such sources might reserve resources at or
close to the peak rate, so that the frequency of renegotia-
tion is highly reduced and so is the possibility of renegoti-
ation failure. There is a three-way tradeoff between buffer
size (and delay), requested rate and the frequency of rene-
gotiation. In any case, note that even if the renegotiation
fails, the source can keep whatever bandwidth it already has.

Second, during admission control, a switch controller
might reject an incoming call even if there is available ca-
pacity, if the resources used by the new call will make future
renegotiations more likely to fail. This allows the network
operator to trade off call blocking probability and renego-
tiation failure probability. We consider admission control
in more detail in Section VI.

Finally, the signaling system could ask the user or appli-
cation (perhaps out of band) to reduce its data rate. Since
the network interface (i.e. the session layer or NIU) is ex-
pected to be no more than a few milliseconds away from the
end point, the control loop between the network interface
and the user will be tight, so that responding to such sig-
nals should be easy, particularly for adaptive codecs [27].
Recent work suggests that even stored video can be dy-
namically requantized in order to respond to these signals
[38], [10].

Thus, there are several viable alternatives for dealing
with renegotiation failures. With an appropriate combina-
tion, some users can choose to see few or no renegotiation
failures, while others might trade off a non-zero renegotia-
tion failure rate for a lower cost of service.

Stored and Interactive Sources Stored video (off-
line) and interactive (on-line) applications use RCBR ser-
vices differently. Off-line sources can compute the renego-
tiation schedule in advance and can initiate renegotiations

in anticipation of changes in the source rate. Moreover,
if all systems in the network share a common time base,
advance reservations could be done for some or all of the
data stream [47]. Interactive applications must compute
the renegotiation schedule on-the-fly. For such applica-
tions, we propose that an active component monitor the
buffer between the application and the network and ini-
tiate renegotiations based on the buffer occupancy. This
monitor could be part of the session layer in an ISO pro-
tocol stack, or reside in the Network Interface Unit (NIU)
for “dumb” endpoints. It would need to be activated only
when data is written to or drained from the buffer. Note
that in both the on-line and off-line cases, renegotiation
signaling and data transfer occur in parallel. Algorithms
for computing the renegotiation schedule for off-line and
on-line applications are presented in Section 4.

B. Implementation

During renegotiation, a switch controller need not re-
compute routing, allocate a connection identifier or ac-
quire housekeeping records. Thus, signaling for renego-
tiation is much less expensive than signaling for call setup
and need not use the same protocol. This allows us to ex-
ploit lightweight signaling mechanisms for renegotiation. A
hardware implementation of signaling for renegotiation is
described in [3].

In an ATM network, sources can reuse the Resource
Management (RM) cell mechanism, originally proposed for
ABR service, for lightweight signaling. An RCBR source
sets the Explicit Rate (ER) field in the RM cell to the dif-
ference between its old and new rates 2. On receiving an
RM cell, a switch-controller (or a dedicated hardware mod-
ule, as in ABR) determines the output port of the VCI in
one lookup, and the utilization and capacity of the output
port in a second lookup. With this information, it checks
if the current port utilization plus the rate difference is less
than the port capacity. If this is true, then the renego-
tiation request succeeds, and the VCI and port statistics
are updated. Otherwise, the controller modifies the ER
field to deny the request. Note that the logic to modify
the ER field with RCBR is simpler than that required for
fair-share computation in ABR. Thus, the deployment of
ATM switches with ABR support is an existence proof that
RCBR support in ATM switches is feasible.

In the Integrated Services Internet, sources and receivers
periodically refresh their network reservation state using
the RSVP signaling protocol [49]. A source periodically
emits a PATH message describing its characteristics, and
each receiver periodically emits a RESV message request-
ing a reservation. To renegotiate its service rate, a source
should change its traffic description (flowspec) in the PATH
message, and the receivers should correspondingly change
their reservation in the RESV message. We do not have

2We use a difference because this simplifies the computation at
the switch controller, which need not keep track of the source’s rate.
This has the problem of parameter drift in case of RM cell loss. To
overcome this, we can resynchronize rates by periodically sending an
RM cell with the true explicit rate, instead of a difference.



enough experience with RSVP to determine whether this
mechanism is sufficiently lightweight for renegotiation. If
this is not the case, we may need to augment RSVP with a
lightweight renegotiation protocol. In any case, we antici-
pate that renegotiations will happen only around every ten
seconds or so (see Section V-B), so the overhead for RCBR
at each source is inherently small.

Note that in order to limit the renegotiation rate, it is
likely that a user will be charged for each renegotiation,
just as users are now charged per call setup. This affects
the choice of renegotiation schedule, as discussed in Section
4.

C. Scaling

We now consider how well RCBR scales with latency in
the path, number of sources, and number of hops. Scaling
with path latency is different for on-line and off-line appli-
cations. Off-line applications are insensitive to path latency
because they can compensate for an increased latency by
initiating renegotiation earlier. However, the performance
of applications with on-line RCBR decreases with an in-
crease in latency, because these applications must predict
their future data rate, and prediction accuracy decreases
with increased latency. This can be compensated for by
increasing the end-system buffer or by asking for more
bandwidth than needed, thus reducing the statistical mul-
tiplexing gain. We do not yet have analytical expressions
or simulation results studying the effect of renegotiation
delay on RCBR performance.

Signaling load increases linearly with the number of
RCBR sources in the network. With hardware support,
we believe that an ATM switch can support several tens
of thousands of simultaneous RCBR sources. The bottle-
neck in RM cell processing is the time taken to lookup
per-VCI state. Since RCBR support does not require per-
VCI state, we do not anticipate difficulties in scaling ATM
switches to handle more renegotiating sources. Scaling of
Integrated Service routers is still a matter of speculation.

As the mean number of hops in the network increases,
the probability of renegotiation failure is likely to increase,
since each hop is a possible point of failure. Moreover,
the net renegotiation signaling load on the network also
increases. However, if there is a simultaneous increase in
the number of alternate routes in the network, then load
balancing at the call level might reduce the load at each
hop, thus compensating for this increase. This is still an
open area for research.

IV. COMPUTATION OF RENEGOTIATION SCHEDULES

In this section, we address the problem of deciding when
to request a bandwidth renegotiation from the network,
and how much bandwidth to ask for. We present two al-
gorithms that transform a given data rate function into
a stepwise CBR data rate function. The first algorithm
determines an optimal schedule for a playback application
based on total knowledge of the user’s data rate function
and a pricing model discussed below. The second algorithm

is a causal heuristic that could be used for interactive users,
where the rate function is not known in advance.

A. Optimal Renegotiation Schedule

We model the problem with a slotted time queue. For
video, a time slot would typically be the duration of a
frame. Renegotiations occur on the boundary between
slots. Let r;,4 = 0,1,..., N — 1 denote the amount of data
entering the queue during time slot ¢, and let s; denote the
service rate during time slot ¢. The session duration is N
time slots. We assume the service rate during any time slot
is in a given set C = {cp,¢1,--.,CK—-1}-

We have assumed a constant cost per renegotiation ¢ and
a cost 7y per allocated bandwidth and time unit. Therefore,
the total cost is given by

N-1 N-1

¢- (1 —6(si-1,83)) +7- Z 8; (1)
1=1 =0
with ;
1 ifx=y
8(zy) = { 0 otherwise

For a given r;, the optimal allocation minimizing the total
cost, has to be found, subject to the buffer constraint

0<b;<Bfori=0,1,...,N—1 (2)
where b; is the queue size at the end of time slot 4, with

0 ifi<O0
bl_{ max{bi,1+7“,-—si,0} 1=0,1,...,N—1 (3)
We solve this optimization problem with a Viterbi-like al-
gorithm [45]. Let us first introduce some notation (cf. Fig.
1). A nodeis a 4-tuple (i, k, b, w), where i denotes (discrete)
time, k € {0,...,K — 1} denotes a bandwidth allocation
¢, € C,be€{0,...,B} denotes a buffer occupancy, and w
denotes the weight, which equals the partial cost of the best
path to this node. A branch connects a node (i, k, b, w) to
another node (i +1, k', b',w') if b' = max{b; +r;31 —cx,0}.
It has an associated weight of v - s;41+ ¢ - (1 — 6(8i, 8i41))-
A branch represents one step in the evolution of the sys-
tem state, given a choice of the new rate allocation cx. A
path is a sequence of branches. The cost of a path is the
sum of the cost of its branches. All possible paths form the
trellis. A full path is a path connecting a node with ¢ = 0
with a node with ¢ = N — 1, and corresponds to a feasible
renegotiation schedule.
Now we can formulate the optimization problem as fol-
lows: find the shortest path from some node at time zero
to some node at time N — 1. The algorithm to do this is
presented below.
1. Set i« = 0. Create the initial set of nodes (0, k,0,0)
for k€ {0,..., K —1}.

2. Create all the branches between nodes of slot ¢ and
nodes of slot i + 1. Set the weight according to (1) for
the nodes of slot 7 + 1.

3. Prune paths according to Lemma 1 given below.

4. Increment ¢ and repeat steps 2 and 3 aslong as¢ < N.
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Fig. 1. An illustration of the trellis to be used for the Viterbi-like
algorithm.

5. Choose one of the paths with the minimum weight as
the solution.
We now present a lemma that governs the pruning of
paths.
Lemma 1: A path X going through a node z =
(4, kz, bz, w,) is not optimal if there exists a path ¥ through
anode y = (4, ky, by, w,) such that 3

¢ ifky, #ks ()
0 otherwise
Proof: Assume the condition is true. First, if k; = ky,
then path Y has smaller or equal buffer occupancy and
smaller or equal weight than path X. Due to the buffer
constraint, for all future time slots, the best full path con-
taining X must have a bandwidth allocation that is at least
the bandwidth allocation of the best full path containing
path Y. Therefore, it cannot have a lower weight than the
best full path containing Y. Second, if k, # k, then for
any k € {0, ..., K —1} such that a branch from z to a node
' =G+ 1,k, by, wy) exists, there exists a branch from y
to anode y' = (i+1,k, by, w, ) such that b, < by, as the
service rate in interval ¢+ 1 is the same and by assumption,
by < b,. As the difference in cost of the branch connecting
y to ¥’ and the branch connecting z to z’ cannot be larger
than ¢, the first part of the proof applies to 2’ and 3. O
Instead of the buffer bound (2), it is also possible to
enforce a delay bound. This might be desirable in real-
time applications, if sufficient buffer space is available, but
the Quality of Service still requires to keep delays low. The
condition for all data entering during time slot i— D to have
left at the end of time slot i is

by < b, and wy < w, —

0
biip< Y. sy; i=D,...,N-1 (5)
j=—D+1

The runtime complexity of the optimization algorithm
very much depends on the cost ratio ¢/+, the buffer size B

3Note that this allows us to do more than the “standard Viterbi”
pruning, i.e. among paths terminating in a common node, keep only
the one with the lowest weight. We can also prune across nodes.

and above all the number of bandwidth levels K. Also, the
user rate function {r;} has has an impact on how many can-
didate paths remain valid at each time slot. We have found
that if we restrict K to about 20, optimizations can be done
in reasonable time, even for long traces like the Star Wars
movie (approx. 174000 samples) [12]. For larger K, e.g.
100, it quickly becomes impracticable, because of an ex-
plosion in the number of paths that have to be considered.
For example, with K = 20 (with the bandwidth levels cho-
sen uniformly within ¢y = 48kbps and cx_1 = 2.4Mbps),
the computation took about 20 minutes on an Sun Ultra-
Sparc 1, while with K = 100, the computation took more
than a day.

We call bandwidth efficiency the ratio of the original
stream’s average rate to the average of the piecewise con-
stant service rate, i.e.

i i

Yo s
The graph “OPT” in Figure 2 shows the mean renegotiation
interval and the bandwidth efficiency for various choices of
the cost ratio ¢/, for a buffer size B = 300kbit, which
represents a buffering delay of slightly less than 1 second
(recall that the average rate of the trace is 374 kbps). It is
clear from Fig. 2 that there exists a tradeoff between band-
width efficiency and renegotiation frequency. This tradeoff
depends on the cost ratio ¢/~: raising the price for renego-
tiation results in a lower renegotiation frequency, but also
in a lower bandwidth efficiency, and vice versa. The net-
work operator can announce these prices to the user, and
the user optimizes his network usage accordingly. Note
how close the bandwidth efficiency gets to one with very
reasonable renegotiation frequencies; for example, with one
renegotiation every 7 seconds, we achieve over 99% of band-
width efficiency. This is a clear manifestation of the slow
time-scale behavior of compressed video streams.

B. Causal Renegotiation Schedule

For interactive (online) sources, the optimization algo-
rithm described above cannot be used to determine opti-
mal renegotiation points. For such sources, causal heuris-
tics have to be used to make decisions about requesting
new rates. Such heuristics predict the future bandwidth
requirement based on some statistics collected in the past.
The goal of this section is to show that heuristics resulting
in satisfactory performance do indeed exist, although their
derivation is somewhat ad hoc.

The heuristic we present is based on a AR(1) bandwidth
estimator and on buffer thresholds. Three parameters have
to be tuned: a high and a low buffer threshold B, and By,
respectively, and a time constant T, which should reflect
the long-term rate of change of the rate function. The rate
predictor we have used is

7/:1'+1 = (1 - T_l)ﬂ' + T_l(’l“i + max{bi - Bh,O}) (6)

where r; is the actual incoming rate during slot ¢, and b;
is the buffer size at the end of slot i. The additional term



T—!-max{b; — Bp,, 0} in the estimator adds the bandwidth
necessary to flush the current buffer content within 7. This
is necessary to have a sufficiently fast reaction to sudden
large buffer buildups.

The algorithm is very simple. Let
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with A the bandwidth allocation granularity. A new band-
width s,e., is then requested if

(b; > B, and Speqy > 8) or (b; < By and Spew < 5)  (8)
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Fig. 2. The tradeoff between bandwidth efficiency and renegotiation
frequency for the AR(1)-based heuristic, compared to the opti-
mum, for the “Star Wars” trace. The parameters for the AR(1)
heuristic are: B; = 10kbit, B, = 150kbit, T" = 5 frames, and A
is varied from 25kbps (left) to 400kbps (right). In this example,
the buffer occupancy never exceeds B = 300kbit.

It can be seen in Fig. 2 that using the heuristic, we need
about one renegotiation a second to achieve 95% of band-
width efficiency (with B; = 10kbit, B, = 150kbit, T = 5
frames, and A = 150kbps). Although this is considerably
less than what can be achieved with the optimal allocation,
it still represents a relatively small load on the signaling
system. However, this gap suggests a potential for better
heuristics, and we hope to address this problem in future
research. For example, the prediction quality could be im-
proved by taking into account the inherent frame structure
of MPEG encoded video.

V. PERFORMANCE OF RCBR

In this section, we would like to get a better understand-
ing of the statistical multiplexing gain (SMG) achievable
using the RCBR scheme, by means of both a theoretical
analysis of a multiple time-scale source model as well as
simulation experiments on real traffic. More specifically,
we compare the SMG of RCBR with that of two other
scenarios (cf. Fig. 3). The first scenario (a) represents tra-
ditional CBR service, with a smoothing buffer of size B at
the network entry and a fixed CBR rate ¢ for each source.

Here, there is no multiplexing between traffic of different
sources. The second scenario (b) multiplexes n streams
without any restriction on a server with rate ¢ and buffer
size nB. This gives the maximum achievable SMG for the
given sources. The third scenario (c¢) represents the RCBR
approach. Each source is smoothed by a dedicated buffer
of size B and transformed into a stepwise CBR stream,
which is then transported without further buffering in the
network (except some cell level buffering). The total ser-
vice rate is ¢ and the total amount of buffering is fixed at
nB in all three scenarios. While the theoretical analysis
gives insights as to the nature of the SMG captured by
the RCBR, the experimental results quantify the amount
of gain for video traffic.

A. Analysis of a Multiple Time-Scale Model

We consider the following discrete-time traffic model for
an individual video source. Let X; be the amount of data
(measured in bits, bytes, cells etc.) generated per time-slot
(duration of a frame,etc.). The process {X:} is modulated
by an irreducible finite state Markov chain such that the
value of X; is a function of the current state. The Markov
structure models the correlation in the data generation rate
over time. The state space S is decomposed into a union
of disjoint subsets S1,8s,...,Sk; each S can be inter-
preted as the state space of a fast time-scale sub-chain.
The dynamics within each sub-chain model fast time-scale
behavior (such as correlations between adjacent frames).
Transitions between various sub-chains, on the other hand,
happen very rarely compared with the transitions inside
each sub-chain; these transitions model the slow time-scale
dynamics of the traffic stream (such as scene change). Let
Qaiq,Qs, ..., a, be the probabilities of these rare transitions;
these are very small parameters. Thus, the source would
typically spend a long time in a sub-chain, and then oc-
casionally jump to a different sub-chain. In the analysis
below, we are interested in the regime when the buffer
time-scale is large enough to smooth out the fast time-
scale fluctuations of the traffic, but is small compared to
the slow transition time-scale.

This multiple time-scale Markov-modulated model has
been used in several video traffic studies [40], [31]. The
sustained peak observed by several researchers corresponds
to remaining in a high-rate sub-chain for a long time in this
multiple time-scale model. See Figure 4 for an example of
a source with three sub-chains.

We shall now characterize the resource requirements for
multiple time-scale sources under the three scenarios in Fig.
3, for given loss probability requirements. Consider first
scenario (a), when each individual stream is smoothed by
a buffer B and allocated a fixed CBR rate of ¢. The min-
imum drain rate ¢ required to achieve a target QoS buffer
overflow probability pyos is known as the equivalent band-
width e(pgos) of the source, and for single time-scale Markov
sources, this has been explicitly computed in terms of the
statistics of the source [14], [11], [28]. This equivalent band-
width is based on a large deviations estimate of the buffer
overflow probability, in the regime of large buffer size B.



a) fixed-rate CBR, smoothing buffer=B

b) unrestricted, network buffer=n B

c) piecewise CBR, network buffer=0

Fig. 3. The three scenarios to assess statistical multiplexing gain (SMG) of our proposed service.
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Fig. 4. A multiple time-scale source with 3 sub-chains.

It can be shown that the equivalent bandwidth is between
the mean and peak rates of the stream, and it measures the
amount of smoothing of the stream by buffering. A large
buffer B in this context means that the buffer is sufficiently
large to smooth out the fluctuation of the traffic stream.

Analogous results have been obtained for multiple time-
scale Markov traffic [41]. For multiple time-scale sources,
one now has to look at the joint asymptotic regime when si-
multaneously the rare transition probabilities «;’s are close
to zero and the buffer size B is large enough to absorb the
fast time-scale fluctuations of the stream. It is shown in
[41] that the equivalent bandwidth e(pgos) of the multiple
time-scale stream is given by

e(pqos) = 12]):2(}( ek(pqos)a (9)
where e;(pgos) is the equivalent bandwidth of the kth fast
time-scale sub-chain when considered in isolation. The in-
tuition is that buffer overflows are due mainly to the ef-
fects of the most bursty sub-chain, and thus the drain rate
needed for the entire stream is the drain rate of that par-
ticular sub-chain. In particular, the drain rate needed is
greater than fi, the maximum of the average rates of the
sub-chains. This implies that the gain due to buffering
alone is rather limited for multiple time-scale traffic, as the
CBR rate needed for the stream is determined by the worst-
case sub-chain. The theoretical result also makes precise

the intuition we presented in Section II, that static traffic
descriptor (in this case, the CBR rate) leads to a wasteful
allocation of resources for multiple time-scale traffic.

To get significant multiplexing gain beyond that ob-
tained by buffer smoothing, the limitation imposed by the
slow time-scale dynamics can be overcome by multiplexing
many independent streams. By a law of large number ef-
fect, the probability that many streams are simultaneously
in a bursty sub-chain is small, so that a small loss proba-
bility can be guaranteed even if the capacity allocated per
stream is less than fi. This is shown in scenario (b) in Fig.
3, where n independent and statistically identical streams
are multiplexed. If we scale the total link rate ¢ := n¢ and
the total buffer as nB (i.e. the link capacity and buffer
space per stream is fixed in this scaling), an estimate of
the buffer overflow probability, in the regime of large n,
can be obtained in terms of only slow time-scale statistics
of the individual stream (with the fast time-scale dynam-
ics averaged out.) [41]. Specifically, consider a random
variable which takes on the value pj; with probability my,
where 7, is the steady-state probability that the stream is
in sub-chain k and puy is the mean rate of sub-chain k. Let
L be the log moment generating function of this random

variable:
K

L(r) =log Z Tk exp(fuxT).
k=1
and define L* by:

L*(p) = max[ur — L(7)],

the Legendre transform of L. Then the asymptotic estimate
of the loss probability when there are many sources and the
buffering B per source large is given by:

p = exp(=L"(¢) - n) (10)

Note that (10) is simply the Chernoff’s estimate of the
probability that the streams are in a combination of sub-
chains whose total mean rate exceeds the channel capacity
[46], [23]. Note that this estimate does not depend on the
fast time-scale statistics of the streams nor on the specific
value of buffer size B, provided that it is large enough to ab-
sorb the fast time-scale variations of the streams. This re-
sult can be interpreted as a decomposition of the gain from



multiplexing large number of multiple time-scale streams
in a buffered node into two components. The first compo-
nent is the gain obtained from buffering: its effect is essen-
tially to remove the time-scale fluctuations of the sources.
The second component is the gain from averaging between
sources: it only depends on the slow time-scale statistics,
and is the same as that obtained in a bufferless system with
the fast time-scale fluctuations removed from the traffic.
At the slow time-scale, the buffer is too small to have any
significant effect. Note also that for a target overflow prob-
ability pgos, the total link rate needed can be computed
from eqn. (10).

Finally, we consider the RCBR scenario, (¢) in Fig. 3,
where the multiplexing node is bufferless and users have
dedicated buffer. We characterize how much of the multi-
plexing gain in the shared buffer case (scenario (b)) our pro-
posed scheme can capture. Assume that the scheme does
an ideal job in separating the slow and fast time-scales, such
that it renegotiates a new CBR rate whenever the source
jumps from a fast time-scale sub-chain to another. For a
buffer overflow probability requirement pys, the new CBR
rate it should renegotiate for is the equivalent bandwidth
ek(Pgos) of the sub-chain k the source enters. Since m, is
the steady-state probability that the stream is in sub-chain
k, the stream will demand a CBR rate of ex(pgos) for mp
long-term fraction of time. The probability of renegotia-
tion failure is roughly the probability that the total CBR
bandwidth demand exceeds the available capacity; for large
n, we can use Chernoft’s estimate to approximate this as

exp(—L¢(c) - n), (11)

where

K
Le(r) =log ) m exp(ex(Pgos, B)r)  Li(p) = maxfur—Le(r)]

k=1

and ¢ is the link capacity per source. Comparing this to
the loss probability (10) when there is a shared buffer of
size nB, we see that this renegotiation failure probability
is larger since the equivalent bandwidth ex(pgos) of every
sub-chain is greater than its mean rate p. Viewed in an-
other way, the capacity per stream needed for the same
level of performance is greater in our scheme. This dis-
crepancy in bandwidth requirement is due to the fact that
our scheme does not take advantage of a large shared buffer
to effectively absorb all fast time-scale variations through
statistical multiplexing. Thus, out of the two components
of the SMG in the shared buffer case, RCBR extracts the
component obtained from averaging between sources. Our
scheme essentially focuses on the gain in the averaging of
the slow time-scale dynamics rather than the smoothing of
the fast time-scale dynamics. However, for sources with
small fast time-scale fluctuations superimposed on larger
slow time-scale variations, the equivalent bandwidths of
the sub-chains will be close to the mean-rates for reason-
ably sized buffers, and the discrepancy will be small. This
is further substantiated by the experimental results pre-
sented next.

B. Experimental results

We shall now present simulations results comparing the
performance in the three scenarios in Fig. 3. The stream
we have used is the MPEG-1 encoded trace of the Star Wars
movie [12]. The n sources are randomly shifted versions
of this trace. The buffer size B was chosen as 300kbit,
slightly more than the maximum size of three consecutive
frames in the trace. This approximately corresponds to
the buffering of current video codecs. The renegotiation
schedule used in the experiments is computed using the
off-line optimization algorithm described in Section IV-A,
with a bandwidth granularity of 1 kbps and an average of
1 renegotiation every 12 seconds.

(o,p)-Curve of Star Wars MPEG-1 trace, for 1.0e-5 loss
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Fig. 6. Statistical multiplexing gain (SMG) achievable for 10~° loss
probability.

To assess the SMG for all three scenarios, we have deter-
mined the channel service rate per stream c¢/n, as a function
of n, needed to guarantee a desired bit loss probability. In
scenario (a) and (b), bits are lost due to buffer overflow.
In scenario (c), bits are lost due to failure in renegotiating
for a higher CBR rate (in which case we assume the source



has to temporarily settle for whatever bandwidth remain-
ing in the link until more bandwidth becomes available).
Determining c is straightforward for scenario (b). For sce-
narios (a) and (c), we find for each n the minimum c that
guarantees the desired loss probability: for each n, we do a
binary search on c; for each step in the search, we do many
simulations, where each simulation has a randomized phas-
ing of the sources, and compute the average fraction of bits
lost as an estimate of the loss probability. At each step, we
repeat the simulations until the sample standard deviation
of the estimate is less than 20% of the estimate. Results
for 1072 loss probability requirement are depicted in Fig.
6.

In the CBR case (a), the bandwidth per stream is ¢, of
course, regardless of the number of streams n. Note that ¢
can be determined from the corresponding (o, p) curve of
this trace in Fig. 5 (For a given buffer size o, this curve
gives the minimum service rate p such that the fraction of
bits lost is less than 1075.) As has been previously observed
in the literature, this is close to the peak rate [35], [13]. For
the given buffer size and loss ratio, ¢ is 4.06 times the trace’s
average rate of 374kbps.

Our scheme achieves slightly less SMG than the unre-
stricted case because buffers are not shared and the fast
time-scale multiplexing gain is not exploited, as explained
in the theoretical analysis. Nevertheless, we are able to
extract most of the SMG, especially for a large number of
multiplexed streams. For example, for n = 100 streams,
we require less than a third of the bandwidth of the static
CBR approach. Asymptotically, the value for ¢/n for the
stepwise CBR function approaches the inverse of the band-
width efficiency obtained in the optimization algorithm.

VI. ApMmissiON CONTROL

In this section we present some analytical and experi-
mental results on admission control schemes suitable for
RCBR. RCBR belongs to the class of statistical services.
Statistical services are based on a stochastic traffic model,
and the QoS guarantee to the user, in this case the rene-
gotiation failure probability, is stochastic in nature. The
advantage of a statistical service over a deterministic ser-
vice is the higher statistical multiplexing gain that can be
achieved, as we have noted in Section II. A statistical ser-
vice has the disadvantage of being hard to police. Also, it
is cumbersome or impossible for the user to come up with
a tight a-priori traffic descriptor. Therefore, we propose to
use measurement-based admission control (MBAC) in con-
junction with RCBR [26], [15], [42], [20]. Measurement-
based admission control shifts the burden of traffic param-
eter specification from the user to the network. Instead
of the user giving an explicit traffic specification, the net-
work attempts to “learn” the statistics of existing calls by
making on-line measurements. This approach has several
advantages. First, the user-specified traffic descriptor can
be trivially simple (e.g. peak rate). Second, an overly
conservative specification does not result in an overalloca-
tion of resources for the entire duration of the call. Third,
policing is reduced to enforcing peak rate. The goal of this

section is to illustrate some of the problems of MBAC, as
well as possible approaches to devise robust schemes.

Let us first discuss the admission control problem assum-
ing the traffic specification is known. More specifically,
given a renegotiation schedule, we can compute the em-
pirical distribution (histogram) of bandwidth requirements
throughout the lifetime of a call, i.e. the fraction of time
7, that a bandwidth level ¢ is needed during the call,
k =1...K. This distribution can be viewed as the traffic
descriptor of the call. When there are n such calls sharing
a link of total capacity ¢, the renegotiation failure proba-
bility ps can be estimated by Chernoft’s approximation as

in (11):
Pf = exp (—L* <§) n) (12)
where
K
L(r) =log ) meexp(cyr)  L*(p) = maxfur — L(r)]
k=1

Using this formula, the maximum number of calls the
system can carry for a given threshold py,s on the renego-
tiation failure probability can be computed, and new calls
will be rejected when this number is exceeded. Note that
the system will deny new calls even when there is available
capacity, so as to safeguard against fluctuations of band-
width requirements of the calls already admitted. Thus,
Chernoft’s approximation quantifies the amount of slack
needed in the available capacity. The accuracy of this ap-
proximation is quite good. We refer the reader to [18] for
an experimental verification of the Chernoff bound.

In practice, we often do not have a reliable traffic descrip-
tor. Even for stored video, where the empirical bandwidth
distribution could be computed in advance, user interactiv-
ity (fast forward, pause etc.) reduces the accuracy of this
descriptor. However, we can estimate the traffic descriptor
in the following way. The idea is simply to estimate the
distribution by measuring the current state of the network,
and use the estimate as the proxy for the true distribu-
tion. More specifically, the scheme determines the number
of calls ng(t) that is currently reserving bandwidth level ¢,
for each k (k =1,...,K). This yields an empirical distri-
bution {#;} of bandwidth requirements for a typical call,
where 7y, = T:f(%)
in the system at time ¢. The empirical distribution {7} is
then used in place of the actual distribution {74} in (12)
to estimate the renegotiation failure probability, based on
which an admission control decision is made. In control
theory, this controller is said to be certainty equivalent:
the controller assumes that the measured values are the
true parameters and acts like the optimal controller hav-
ing perfect knowledge of the values of those parameters.
Moreover, this scheme is also memoryless, i.e. every time
a new call arrives, the scheme uses only information about
the current state of the network in making the decision of
accepting or rejecting the call. This memoryless certainty-
equivalent scheme has also been studied by Gibbens et. al.
[16] in the context of admission control of on-off sources.

and n(t) is the number of calls currently



Note that the error associated with any estimation pro-
cedure can translate into erroneous call admission deci-
sions, which in turn can compromise the QoS provided
to users. Furthermore, a measurement-based call admis-
sion controller is a dynamical system, with call arrivals
and departures, and parameter estimates that vary with
time. The dynamics of this system have a large impact on
the performance of the MBAC. In particular, we now show
that a memoryless admission controller as described above
is not robust.

We discuss our simulation results obtained for the mem-
oryless MBAC. We compare its performance with the
scheme having perfect knowledge, in the dynamic scenario
where calls arrive and depart from the system. In partic-
ular, we are interested in two performance measures: the
steady-state renegotiation failure probability and the av-
erage fraction of the total bandwidth utilized. The suc-
cess of the measurement-based admission control scheme
is evaluated by how well it meets the QoS-requirement (in
terms of renegotiation failure probability) and how close
its bandwidth utilization is to that of the optimal scheme
with perfect a priori knowledge of call statistics.

Renegotiation failure as a function of number of calls and normalized offered load

log10 (renegotiation failure)

normalized offered load

log10 (capacity/avg)

Fig. 7. The memoryless scheme: renegotiation failure probability.

The simulation set-up is as follows. Each call is a ran-
domly shifted version of a Star Wars RCBR schedule. Calls
arrive according to a Poisson process of rate \. 4 We
measure both the average utilization and the renegotia-
tion failure probability. Each interval of the length of the
trace (approximately two hours) provides us with one sam-
ple for these probabilities. We collect samples until the
95%-confidence interval for both probabilities is sufficiently
small with respect to the estimated value (within + /- 20%
of the estimated value). For the renegotiation failure prob-
ability, we also stop if the target failure probability of 10~°
lies to the right of the confidence interval, i.e., if we are con-
fident that the actual failure probability is lower than the

4Note that as a by-product of using RCBR schedules instead of
full per-frame traces as input, the simulation efficiency is greatly im-
proved, as we only need to simulate the renegotiation events instead
of each frame.

Utilization as a function of number of calls and normalized offered load
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Fig. 8. The memoryless scheme: normalized utilization.
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Fig. 9. Two ways to estimate the call’s marginal bandwidth distri-

bution: a) memoryless; b) with memory, by collecting per-call
history.

target. This is necessary in order to terminate simulations
within reasonable time when the observed renegotiation
failure is very low (e.g. 107%).

Fig. 7 and 8 show the renegotiation failure probability
and the utilization for the memoryless scheme, respectively.
The link capacity is expressed as a multiple of the call av-
erage rate. The normalized offered load is the offered load
normalized by the link capacity. The utilization is normal-
ized to the utilization that is achieved when call admission
is performed based on the Chernoff approximation (12) and
perfect knowledge of the call’s marginal distribution.

It can be seen from Fig. 7 that the memoryless scheme
performs very poorly for small link capacities. The rene-
gotiation failure probability is three to four orders of mag-
nitude larger than the target. From Fig. 8, it is clear
that the memoryless scheme admits too many calls for



small link capacity, as the utilization is much greater than
the utilization under the scheme with perfect knowledge,
which matches the target QoS precisely. We see that in
this regime, the estimation error severely degrades the per-
formance of the system. For larger systems, e.g. n = 100,
the performance improves, meeting the target QoS for low
offered loads. Also note that the renegotiation failure prob-
ability increases with the offered load. This is because a
higher call arrival rate results in more “opportunities” to
go wrong, i.e., to admit a call that should not have been
admitted.

Renegotiation failure as a function of number of calls and normalized offered load
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Fig. 10. Scheme with memory: renegotiation failure probability.

Utilization as a function of number of calls and normalized offered load
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Fig. 11. Scheme with memory: normalized utilization.

We now discuss an approach for obtaining more robust
schemes. We propose a scheme that relies on more memory
about the system’s past bandwidth reservations to come up
with more accurate estimate of the marginal distribution.
In this scheme, we keep track of how often each bandwidth
level ¢ has been reserved by any of the calls currently in
the system. In other words, we accumulate information

about the entire history of each call present in the system,
and use this information to construct the empirical distri-
bution {m;} of bandwidth requirements for a typical call,
and make admission decisions based on the test (12) (cf.
Fig. 9). This scheme is a considerable improvement over
the memoryless scheme. Its renegotiation failure proba-
bility is about two orders of magnitude below that of the
memoryless scheme over the whole range of link capacities
and offered loads we have simulated (cf. Fig. 10). Figure
11 shows that like the memoryless scheme, this scheme is
too optimistic in admitting calls for small link capacities.
For larger link capacities, the utilization converges to the
one obtained with perfect a-priori knowledge of the call
statistics.

In summary, we see that the memoryless scheme is not
robust over the range of parameters we have considered.
The performance of call admission can be enhanced by
using more history about the past behavior of calls. In
practice, however, this gain will have to be traded off with
the slower responsiveness to non-stationarities in the band-
width requirement statistics. A better understanding of
this tradeoff from both a theoretical and an experimental
standpoint is needed. In particular, it is of interest to iden-
tify a memory size which can reap the bulk of the benefit of
using more memory. Also, both our theoretical and exper-
imental results focus on the homogeneous situation, where
all calls have similar statistics. It is important to look at
the heterogeneous case as well. These questions are outside
the scope of this paper. We refer the reader to some of our
recent work on measurement-based admission control [20],
[42].

VII. RELATED WORK

The key contributions of our paper are: (a) to note
that compressed video traffic has significant burstiness in
the slow time-scale, (b) showing that renegotiation allows
us to extract almost all the SMG available from exploit-
ing this variation, and (c) admission control for loosely-
constrained traffic sources. Recently Chong et al [4] and
Zhang and Knightly [48] have independently published
work that comes to the same conclusions. Zhang and
Knightly present a renegotiated VBR service. Chong et
al have concentrated on the online prediction problem us-
ing artificial neural networks. Our work differs from theirs
in some important aspects. First, our work is based on the
theoretical foundation of large deviation analysis of multi-
ple time-scale sources, which gives us deeper insight into
the nature of the multiplexing gain and allows us to for-
mally study the renegotiation failure probability for en-
sembles of renegotiating sources, which is asymptotically
correct in the regime stated in the theorems. In contrast,
Chong et al [4] based their analysis solely on the power
spectral density of the traffic and moreover does not con-
sider the statistical multiplexing issues. As pointed out
by Hajek and He [21], second-order statistics alone do not
uniquely specify loss probabilities and thus it is important
to understand the regime in which these approximations
are valid. Second, we have obtained an optimal off-line



renegotiation algorithm. Third, we have considered ad-
mission control for renegotiating sources. Finally, we have
considered the system aspects of the problem in more de-
tail. Nevertheless, we feel that their work complements
ours, in that it reinforces the importance of renegotiation
for multiple time-scale sources.

The two core mechanisms for RCBR are renegotiation
and rate prediction. In-call renegotiation has been pro-
posed for bursty data traffic by Hui [23], Turner [43], Doshi
and Dravida [9], and Boyer and Tranchier [3]. In their
work, a traffic source sets up a burst level reservation be-
fore sending, or in some cases during a burst. However,
since data traffic bursts can occur every tens of millisec-
onds the reservation process has to be fast. This speed
is not essential for RCBR, where renegotiations happen
once every tens of seconds. In addition, we believe that
renegotiation is effective mainly as a mechanism to extract
SMG from slow time-scale variations in source traffic. Data
traffic exhibits burstiness in the fast time-scale, and thus
renegotiation for data traffic is not likely to be economical
in practice. Nevertheless, the mechanisms for renegotia-
tion proposed in the literature can be used for RCBR with
minor changes.

De Veciana and Walrand have proposed a periodic aver-
aging of rate scheme to smooth traffic at the network edge
[8]- Like RCBR, the output of their traffic shaper is also
a piecewise CBR stream. The basic difference, however, is
that they do not model the multiple time-scale nature of
the traffic stream, and their scheme is not designed to cap-
ture the SMG from multiplexing many sources with slow
time-scale dynamics.

The off-line schedule computation problem has also been
addressed in Salehi et al’s recent work [39]. They propose
to use a client buffer and work-ahead smoothing, i.e., send-
ing data ahead of schedule, in order to achieve an addi-
tional reduction in the flow’s bandwidth fluctuation. They
present an optimal smoothing algorithm that transforms an
arbitrary data stream into a piecewise-CBR stream that
minimizes both the peak rate and the rate variance, and
show that this approach allows to considerably reduce the
renegotiation frequency under RCBR service. Their work
provides an interesting alternative for computing an op-
timal renegotiation schedule. Rexford et al [37] study the
smoothing problem under the assumption that only limited
knowledge about the future frame sizes is available. Mc-
Manus and Ross discuss heuristics for the same problem
setting [30]. They show the condition on the bandwidth
b, the number of prefetched frames d, and the client-side
memory size B, under which a sequence of VBR video can
be transmitted at a constant rate without overflowing or
underflowing the client buffer. Based on these conditions,
heuristics are developed that yield a piecewise constant-
rate transmission schedule. The client-side memory size
and the number of prefetched frames are shown to decrease
with the number of intervals, i.e., the number of renegoti-
ations.

The on-line rate prediction problem has been extensively
studied from several different perspectives in the past.

Adas has addressed it using adaptive linear filtering [2],
and he reports good prediction performance over a range
of compressed video sequences. Other promising methods
are described in [22]. Chong et al [4] have proposed an Ar-
tificial Neural Network based approach for prediction, and
have shown that it compares well with more traditional
alternatives. Reininger et al [36] have investigated meth-
ods to renegotiate Variable Bit Rate (VBR) parameters,
including the peak rate, the sustained rate, and the burst
size. The focus of their work is on the on-line prediction
problem. A drawback of their scheme is the large number of
parameters to be tuned (sliding window size UPCyindow>
aggressiveness factor k, four buffer thresholds Dy, Dy, I}
and I, target quantization Qtargeta and renegotiation de-
lay parameters S and L).

Current, proposals in the ATM Forum for dealing with
ABR traffic are similar in spirit to RCBR in that a source
obtains a stepwise-CBR rate allocation from the network.
However, in the ABR framework, there is an assumption
that the source has an intrinsically infinite data rate that
is modulated by the fair share of the available network ca-
pacity. Thus, the data rate from a source is dynamically
adapted to the available capacity in the network. This is
the opposite of our situation, where the source has an in-
trinsic data rate that the network tries to accommodate.
In other words, in the ABR case the rate information flows
from the network to user; in the RCBR case, the informa-
tion flows from the user to the network.

Our work on admission control is related to that de-
scribed in Gibbens et al [16]. They advocate an approach
based on using the current traffic load measurement in
making admission control decisions. However, their focus
is on how the measurement information can be combined
with a priori knowledge of the traffic sources, while we
investigate the improvement in performance through the
use of more memory of the past network state. More-
over, our schemes are evaluated on real traffic sources,
while theirs are on synthetic on-off sources. Recent work
on measurement-based admission control has also been re-
ported in Jamin et al [26]. However, their scheme has sev-
eral parameters that have to be tuned in order to com-
pensate for the sources of error discussed in the previous
section (estimation error, dynamics); clear insight into how
to set these parameters is lacking.

VIII. DiscUSSION AND CONCLUSIONS
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Fig. 12. Design space for traffic management policies.



We believe that the performance tradeoff space for traf-
fic management policies looks something like Figure 12.
Starting from the right and moving to the left, we have the
Synchronous Digital Hierarchy (SDH) for telephony, Static
CBR, Static VBR, Renegotiated CBR, Renegotiated VBR
(RVBR), ABR, Controlled Load, and finally, unrestricted
datagram service. In SDH, each call is associated with a
time slot, and thus a corresponding bandwidth, that can-
not be shared with any other call. Static CBR and static
VBR are described in Section 2 and have one-shot traffic
descriptors. RCBR and its corresponding service, RVBR,
add renegotiation to CBR and VBR respectively. ABR ser-
vice in ATM networks guarantees a connection zero loss,
but its service rate changes as a function of other traf-
fic in the network. With this service, the network agrees
to perform admission control such that a source’s perfor-
mance does not substantially degrade, but the degree of
degradation is not quantified. Finally, "datagram" refers
to unrestricted sharing of all network resources.

As we move from right to left, the statistical multiplex-
ing gain (SMG) achievable increases, but if the network
resources allocated to a stream are kept the same, the pro-
tection between streams decreases. That is, one stream can
more adversely affect another’s performance in terms of its
service rate and loss rate. For example, as one moves from
Static CBR to Static VBR, more SMG is possible, but there
is a greater loss of protection. This is because with a fixed
amount of buffering a VBR source could experience packet
loss due to a coincident burst from another source. Note
that in moving from Static CBR to Static VBR similar pro-
tection can be obtained, but only at the cost of increased
buffering, or by describing source traffic with more parame-
ters [29]. Similarly, as we move from Static VBR to RCBR,
we incur renegotiation overheads, but can potentially ex-
ploit slow time-scale variations in the source rate to get
increased SMG. RVBR allows more SMG, since both slow
and fast time-scale variations are exploited. However, there
is more overhead for renegotiation, per-stream regulation,
and larger buffers at each switch. The next step along the
spectrum is to ABR, where there is much less protection
between streams, because each user’s bandwidth depends
on the demand of the others. However, even more SMG is
possible, since SMG is extracted at the burst level. Con-
trolled Load service offers potentially even more SMG than
ABR service, but at the expense of a non-zero loss rate. Fi-
nally, with datagram service, the most SMG is available,
since call level, burst level, and cell level statistical multi-
plexing is possible. Unfortunately, datagram service also
has the least protection - a single burst from a malicious
or ill-behaved source can affect all the others.

The point is that RCBR is not a panacea. It is one choice
in a spectrum of choices for carrying compressed video. We
feel that RCBR is best suited to traffic whose variation is
not confined to the fast time-scale. This seems to match
at least the subset of the compressed video traffic workload
that has been measured in the literature. Other services
could also be used to carry compressed video traffic: ABR,
Static VBR, RVBR, and Static CBR have all been proposed

in the literature. Ultimately, a network provider and user
must choose a service based on their relative costs, efficien-
cies and afforded qualities of service.

Nevertheless, we feel that RCBR has some clear benefits.
First, it is relatively easy to implement, since we are adding
a renegotiation component to the well-understood Static
CBR service. While RCBR admission control is potentially
complex, this is more than balanced by the fact that neither
complez scheduling disciplines nor large buffers are required
in the network switches [17]. RCBR allows us to keep the
network core fast, cheap and dumb (at least in the data
path), and put intelligence in the edges to extract the SMG
from slow time-scale variations.

Second, an RCBR network is always stable, in the sense
that the sum of arrival rates to a multiplexing point is al-
ways smaller than the corresponding service rate. Each ad-
mitted call or burst moves the system from a stable config-
uration to another stable configuration. Thus, the network
operator can easily guarantee zero loss and small queueing
delays within the network.

We have already shown that RCBR gets more SMG than
a static service. There is another significant advantage.
Users of a static service get only one chance to provide the
network with a traffic descriptor. If they guess wrong, they
either get poor SMG, or suffer from large delays, which
might be unacceptable. With RCBR, a source has the op-
tion to modify its traffic descriptor over time. The danger is
that the network might admit too many ill-described users,
so that at some future time, the renegotiation failure rate
may be too high. This is because there really is no free
lunch. If a user is admitted into a network before its traffic
is characterized, then there is always the possibility that
mistakes will be made by admitting too many users. How-
ever, Section VI indicates that we might be able exploit the
law of large numbers to make this risk acceptably small.

It is instructive to compare RCBR with unrestricted
sharing. With unrestricted sharing ("datagram service")
we achieve the maximum SMG, but the least protection.
In practical terms, with unrestricted sharing, a source must
always be prepared to deal with data loss (for example,
by using forward error correction or retransmitting data).
Moreover, data loss is unpredictable. The analogue to loss
in RCBR is renegotiation failure. With RCBR, however, a
source retains its existing bandwidth even if renegotiation
fails. Besides, a source is explicitly informed about renego-
tiation failure so that it can take corrective measures. This
makes it easier to integrate RCBR with techniques such as
dynamic requantization of stored video, adaptive coding
and multilevel scalable coding.

To conclude, we have shown that a source with slow time-
scale variations would suffer performance problems when
carried over a static service. Large deviation analysis pro-
vides theoretical insight into this problem and motivates
the design of the RCBR service. We have considered the
system aspects of implementing RCBR and have carried
out several experiments to measure its performance. The
results in Section V-B show that RCBR obtains most of
the slow time-scale SMG with a fairly small load on the



signaling system. Further, it is possible to compute the
optimal renegotiation schedule for a real traffic source in
a reasonable amount of time. Finally, we have studied the
call admission problem and come up with admission control
tests based on a large deviation analysis. Thus, our anal-
ysis and experiments show that RCBR service is efficient
and well suited for multiple time-scale traffic.

IX. ACKNOWLEDGMENTS

We are indebted to Mark Garrett for providing the traces
of MPEG compressed Star Wars. We wish to thank the
anonymous reviewers for very valuable and extensive feed-
back that has considerably improved the presentation of
this paper.

REFERENCES

[1] ATM Forum Traffic Management Specification Version 4.0. ATM
Forum Specification /af-tm-0056.000, ATM Forum, April 1996.

[2] A. Adas. Supporting Real Time VBR Video Using Dynamic
Reservation Based on Linear Prediction. In Proc. IEEE INFO-
COM ’96, San Fransisco, CA, March 1996.

[3] P.E. Boyer and D.P. Tranchier. A reservation principle with
applications to the ATM traffic. Computer Networks and ISDN
Systems, 24:321-334, 1992.

[4] S. Chong, S.Q. Li, and J. Ghosh. Predictive Dynamic Bandwidth
Allocation for Efficient Transport of Real-Time VBR Video over
ATM. IEEE Journal on Selected Areas of Communications,
13:12-23, January 1995.

[5] D. Clark, S. Shenker, and L. Zhang. Supporting real-time appli-
cations in an integrated services packet network: Architecture
and mechanism. In Proc. ACM SIGCOMM ’92, pages 14-26,
1992.

[6] ReneL. Cruz. A Calculus for Network Delay, Part I: Network El-
ements in Isolation. IEEE Transactions on Information Theory,
37(1):114-131, January 1991.

[7] Rene L. Cruz. A Calculus for Network Delay, Part II: Net-
work Analysis. IEEE Transactions on Information Theory,
37(1):132-141, January 1991.

[8] G. de Veciana and J. Walrand. Traffic Shaping for ATM Net-
works: Asymptotic Analysis and Simulations. submitted to
IEEE/ACM Transactions on Networking, 1992.

[9] B. Doshi and S. Dravida. Congestion Controls for Bursty Data
Traffic in Wide Area High Speed Networks: In-Call Negotiations.
Proc. ITC Specialist Seminar 7, Morristown, NJ, 1990.

[10] A. Eleftheriadis and D. Anastassiou. Meeting Arbitrary QoS
Constraints Using Dynamic Rate Shaping of Coded Digital
Video. Proc. 5th Workshop on Networking and Operating Sys-
tem Support for Digital Audio and Video, pages 95-106, April
1995.

[11] A. Elwalid and D. Mitra. Effective Bandwidth of General Marko-
vian Traffic Sources and Admission Control of High-Speed Net-
works. IEEE/ACM Transactions on Networking, 1:329-343,
June 1993.

[12] M. W. Garrett. Contributions Toward Real-Time Services on
Packet Switched Networks. PhD thesis, Columbia University,
1993. Chapter IV.

[13] M. W. Garrett and Walter Willinger. Analysis, Modeling and
Generation of Self-Similar VBR Video Traffic. In Proc. ACM
SIGCOMM °94, pages 269-280, London, UK, August 1994.

[14] R.J. Gibbens and P.J. Hunt. Effective Bandwidths for the Multi-
type UAS Channel. Queueing Systems, 9:17-27, 1991.

[15] R.J. Gibbens, F.P. Kelly, and P.B. Key. A Decision-theoretic
Approach to Call Admission Control in ATM Networks. IEEE
Journal on Selected Areas of Communications, pages 1101-1114,
August 1995.

[16] R.J. Gibbens, F.P. Kelly, and P.B. Key. A Decision-theoretic
Approach to Call Admission Control in ATM Networks. [IEEE
JSAC, Special issue on Advances in the Fundamentals of Net-
working, August 1995.

[17] M. Grossglauser and S. Keshav. On CBR Service. In Proc. IEEE
INFOCOM ’96, San Francisco, California, March 1996.

18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

26]

(27]

28]

[29]

(30]

(31]

32]

(33]

34]

(35]

(36]

[37]

(38]

39]

M. Grossglauser, S. Keshav, and D. Tse. RCBR: A Simple and
Efficient Service for Multiple Time-Scale Traffic. In Proc. ACM
SIGCOMM ’95, pages 219-230, Boston, Mass., August 1995.
M. Grossglauser, S. Keshav, and D. Tse. The Case Against Vari-
able Bit Rate Service. In Proc. 5th Intl. Workshop on Network
and Operating System Support (NOSSDAV ’95), pages 307-310,
Durham, New Hampshire, April 1995.

M. Grossglauser and D. Tse. A Framework for Robust
Measurement-Based Admission Control. In Proc. ACM SIG-
COMM ’97, Cannes, France, September 1997.

B. Hajek and L. He. On variations of queue responses for inputs
with identical mean and autocorrelation fucntions. In Confer-
ence on Information Sciences and Systems, Princeton Univer-
sity, 1996.

I. Hsu and J. Walrand. Quick Detection of Changes in Traffic
Statistics: Application to Variable Rate Compression. In Pro-
ceedings of the 32nd Allerton Conference on Communications,
Control and Computing, Monticello, IL, 1993.

J.Y. Hui. Resource Allocation for Broadband Networks. IEEE
Journal on Selected Areas in Communications, 6(9), December
1988.

ITU. Q.2931 Digital Subscriber Signalling System No. 2 (DSS
2) User-Network Interface (UNI) layer 3 specification for ba-
sic call/connection control, February 1995. available from
http://www.itu.ch.

ITU. Q.2971 Broadband integrated services digital network
(B-ISDN) Digital subscriber signalling system No.2 (DSS
2) User-network interface layer 3 specification for point-to-
multipoint call/connection control, October 1995. available from
http://www.itu.ch.

S. Jamin, P. B. Danzig, S. Shenker, and L. Zhang. A
Measurement-Based Admission Control Algorithm for Inte-
grated Services Packet Networks. In Proc. ACM SIGCOMM
’95, 1995.

H. Kanakia, P.P. Mishra, and A. Reibman. An Adaptive Con-
gestion Control Scheme for Real-Time Packet Video Transport.
Proc. ACM SigComm, 1993.

G. Kesidis, J. Walrand, and C.S. Chang. Effective Band-
widths for Multiclass Markov Fluids and Other ATM Sources.
IEEE/ACM Transactions on Networking, 1(4):424-428, August
1993.

E. Knightly and H. Zhang. D-BIND: An Accurate Traffic Model
for Providing QoS. In IEEE/ACM Transactions on Networking,
5(2):219-231, April 1997.

J. M. McManus and K. W. Ross. Video-on-Demand Over ATM:
Constant-Rate Transmission and Transport. IEEE Journal on
Selected Areas of Communications, pages 1087-1098, August
1996.

M. Nomura, T'. Fujii, and N. Ohta. Basic Characteristics of Vari-
able Rate Video Coding in ATM Environment. IEEE Journal
on Selected Areas of Communications, 7(5), June 1989.

A. K. Parekh and R. G. Gallager. A Generalized Processor Shar-
ing Approach to flow control in Integrated Services Networks -
The Single Node Case. IEEE/ACM Transactions on Network-
ing, 1(3):344-357, June 1993.

A. K. Parekh and R. G. Gallager. A Generalized Processor Shar-
ing Approach to flow control in Integrated Services Networks -
The Multiple Node Case. IEEE/ACM Transactions on Net-
working, 2(1):137-150, April 1994.

E. P. Rathgeb. Modeling and Performance Comparison of Polic-
ing Mechanisms for ATM Network. IEEE Journal on Selected
Areas in Communications, 9(3):325-334, April 1991.

E. P. Rathgeb. Policing of Realistic VBR Video Traffic in an
ATM Network. International Journal of Digital and Analog
Communications Systems, 6:213—-226, 1993.

D. J. Reininger, D. Raychaudhuri, and J. Y. Hui. Bandwidth
Renegotiation for VBR Video Over ATM Networks. IEEE Jour-
nal on Selected Areas of Communications, 14(6), August 1996.
Jennifer Rexford, Subhabrata Sen, Jayanta Dey, Wu chi Feng,
James Kurose, John Stankovic, and Don Towsley. Online
Smoothing of Live, Variable-Bit-Rate Video. In International
Workshop on Network and Operating Systems Support for Digi-
tal Audio and Video (NOSSDAV ’97), pages 249-257, May 1997.
R. Safranek, C. Kalmanek, and R. Garg. Methods for Match-
ing Compressed Video to ATM Networks. Proc. of IEEE IT
Workshop on Information Theory, Multiple Access and Queue-
ing Theory, St. Louis, page 6, April 1995.

J. Salehi, Z. Zhang, J. Kurose, and D. Towsley. Supporting



[40]

[41]

[42]

[43]

[44]

[45]
[46]
[47]
[48]

[49]

Stored Video: Reducing Rate Variability and End-to-End Re-
source Requirements through Optimal Smoothing. Proc. ACM
SIGMETRICS, Philadelphia, PA, May 1996.

P. Sen, B. Maglaris, N. Rikli, and D. Anastassiou. Models for
Packet Switching of Variable-Bit-Rate Video Sources. IEEE
Journal on Selected Areas of Communications, 7(5), June 1989.
D. Tse, R. Gallager, and J. Tsitsiklis. Statistical Multiplexing
of Multiple Time-Scale Markov Streams. [EEE JSAC, Special
issue on Advances in the Fundamentals of Networking, August
1995.

D. Tse and M. Grossglauser. Measurement-Based Call Admission
Control: Analysis and Simulation. In Proc. IEEE INFOCOM
’97, Kobe, Japan, April 1997.

J.S. Turner. Managing Bandwidth in ATM Networks with
Bursty Traffic. IEEE Network Magazine, September 1992.

W. Verbiest and L. Pinnoo. A variable bit rate codec for ATM
networks. IEEE Journal on Selected Areas of Communications,
7(5):761-770, June 1989.

A.J. Viterbi and J.K. Omura. Principles of Digital Communi-
cation and Coding. McGraw-Hill, 1979.

A. Weiss. A New Technique for Analyzing Large Traffic Systems.
Advances in Applied Probability, 18:506-532, 1986.

L.C. Wolf, L. Delgrossi, R. Steinmetz, S. Schaller, and H. Wuttig.
Issues in Reserving Resources in Advance. Proc. 5th Workshop
on Networking and Operating System Support for Digital Audio
and Video, pages 27-37, April 1995.

H. Zhang and E.W. Knightly. RED-VBR: A Renegotiation-
Based Approach to Support Delay-Sensitive VBR Video. ACM
Multimedia Systems Journal, 5(3):164-176, May 1997.

L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala.
RSVP: A New Resource ReSerVation Protocol. IEEE Network,
September 1993.

Matthias Grossglauser (S '92/ACM S ’96)
received the Diplome d’Ingénieur en Systémes
de Communication from the Swiss Federal In-
stitute of Technology (EPFL), and the M. Sc.
from the Georgia Institute of Technology, both
in 1994. He is currently pursuing his Ph. D.
at INRIA Sophia Antipolis, France. His re-
search interests are in network traffic analy-
sis and modeling, measurement-based admis-
sion control, and reliability and scalability in
multipoint communications.

Srinivasan Keshav (ACM ’86) is an Asso-
ciate Professor of Computer Science at Cornell
University. Formerly a Member of Technical
Staff at AT&T Bell Laboratories, Dr. Keshav
received his Ph.D. in Computer Science from
UC Berkeley in 1991. He is the author of nu-
merous technical papers, two of which were se-
lected by ACM Sigcomm as being among the
most influential papers in computer networking
in the past twenty-five years. His book, "An
Engineering Approach to Computer Network-

ing"

was published by Addison-Wesley in their Professional Comput-

ing Series in May 1997.His email address is: skeshav@cs.cornell.edu

David N. C. Tse (S ’91, M ’92) was born
in Hong Kong. He received the B.A.Sc. de-
gree in systems design engineering from Uni-
versity of Waterloo, Canada, in 1989, and the
M.S. and Ph.D. degrees in electrical engineer-
ing from Massachusetts Institute of Technology
in 1991 and 1995 respectively. He has spent
one year as a postdoctoral member of tech-
nical staff with A.T & T Bell Laboratories.

Since November 1995, he has been an assis-

tant professor in the Department of Electrical
Engineering and Computer Sciences at the University of California,
Berkeley. His current research interests are on resource allocation
problems in broadband and wireless networks, and in information
theory.



