Traffic Measurement for IP Operations

Matthias Grossglauser and Jennifer Rexford

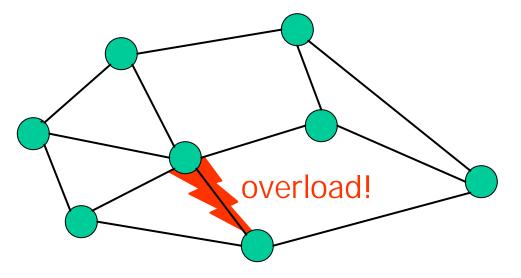
IP Network Management and Performance AT&T Labs – Research; Florham Park, NJ

Outline of Tutorial

- Introduction
- Measurement techniques (part 1)
 - Terminology and general techniques
 - Active measurement of performance
 - SNMP and RMON
- Measurement techniques (part 2)
 - Packet monitoring
 - Flow measurement
 - Data interpretation
- Measurement & models for traffic engineering
 - Path matrix (trajectory sampling, IP traceback)
 - Traffic matrix (network tomography, MPLS MIBs)
 - Demand matrix (joining flow and routing data)

Introduction: Outline

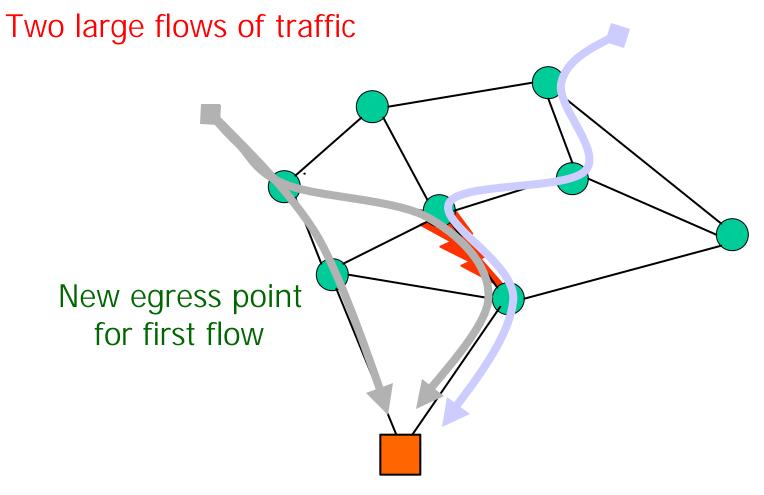
- Example challenge for network operators


 Detect, diagnose, and fix
- Conflicting goals of IP and operators

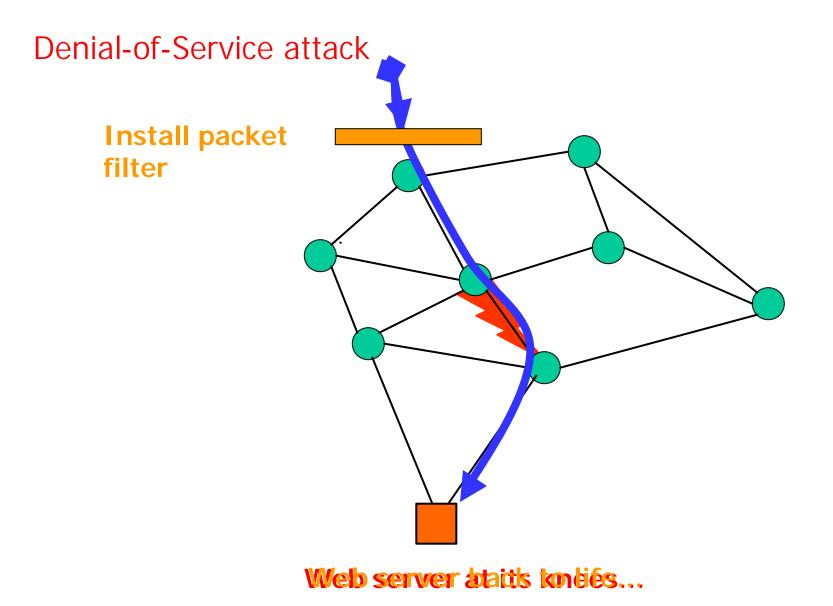
 Distributed vs. centralized control
- Overview of IP protocol suite (and challenges)
 IP, TCP, DNS, and application-layer protocols
- Internet Service Provider networks
 - ISP architecture and routing protocols
- Responsibilities of network operators
 - Challenges, timescales, and key tasks

Network Operations: Detecting the Problem

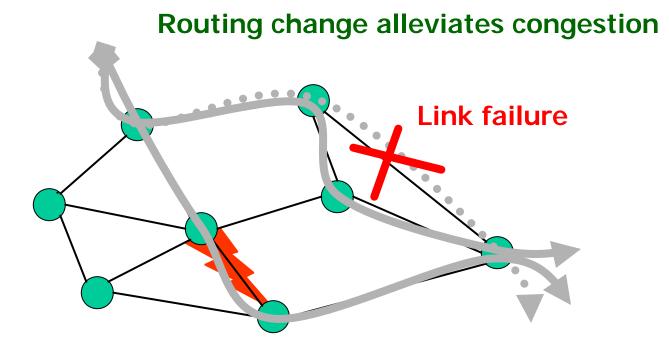
"Don't IP networks manage themselves?"


- Doesn't TCP adapt automatically to network congestion?
- Don't the routing protocols automatically reroute after a failure?

Detecting the problem!


- High utilization or loss statistics for the link?
- High delay or low throughput for probe traffic?
- Complaint from angry customer (via phone network)?

Network Operations: Excess Traffic



Multi-homed customer

Network Operations: DoS Attack

Network Operations: Link Failure

New route overloads a link

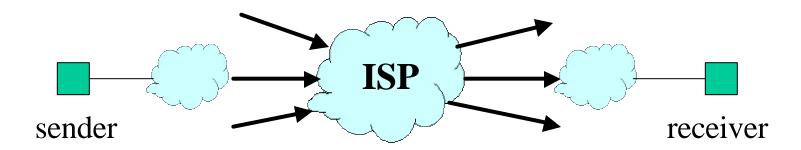
Summary of the Examples

- How to *detect* that a link is congested?
 - Periodic polling of link statistics
 - Active probes measuring performance
 - Customer complaints
- How to *diagnose* the reason for the congestion?
 - Change in user behavior
 - Denial of service attack
 - Router/link failure or policy change
- How to *fix* the problem???
 - Interdomain routing change
 - Installation of packet filters
 - Intradomain routing change

Network measurement plays a key role in each step!

Tension Between Goals of IP Designers and Operators

IP Design Philosophy: Main Goals [Clark'88]


- Effective multiplexed utilization of existing networks

 Packet switching, not circuit switching
- Continued communication despite network failures
 - Routers don't store state about ongoing transfers
 - End hosts provide key communication services
- Support for multiple types of communication service
 - Multiple transport protocols (e.g., TCP and UDP)
- Accommodation of a variety of different networks
 - Simple, best-effort packet delivery service
 - Packets may be lost, corrupted, or delivered out of order
- Distributed management of network resources
 - Multiple institutions managing the network
 - Intradomain and interdomain routing protocols

Characteristics of the Internet

• The Internet is

- Decentralized (loose confederation of peers)
- Self-configuring (no global registry of topology)
- Stateless (limited information in the routers)
- Connectionless (no fixed connection between hosts)
- These attributes contribute
 - To the success of Internet
 - To the rapid growth of the Internet
 - … and the difficulty of controlling the Internet!

Operator Philosophy: Tension With IP

- Accountability of network resources
 - But, routers don't maintain state about transfers
 - But, measurement isn't part of the infrastructure
- Reliability/predictability of services
 - But, IP doesn't provide performance guarantees
 - But, equipment is not very reliable (no "five-9s")
- Fine-grain control over the network
 - But, routers don't do fine-grain resource allocation
 - But, network self-configures after failures
- End-to-end control over communication
 - But, end hosts adapt to congestion
 - But, traffic may traverse multiple domains

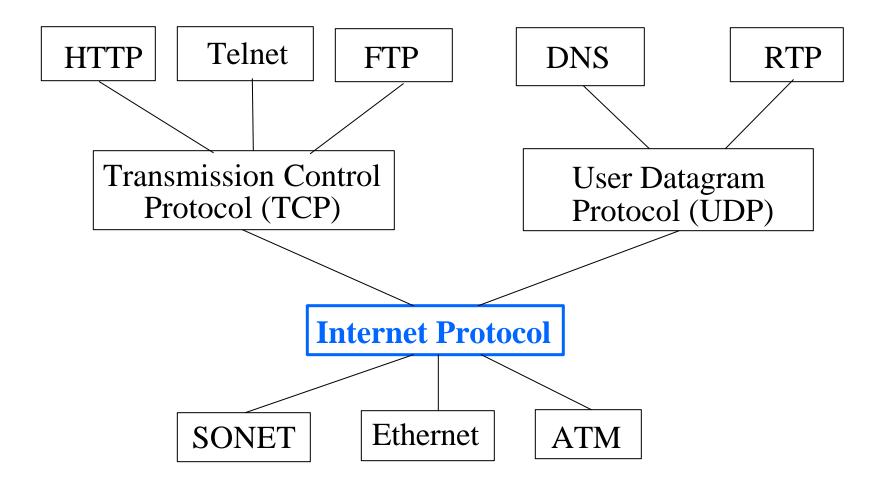
The Role of Traffic Measurement

• Operations (control)

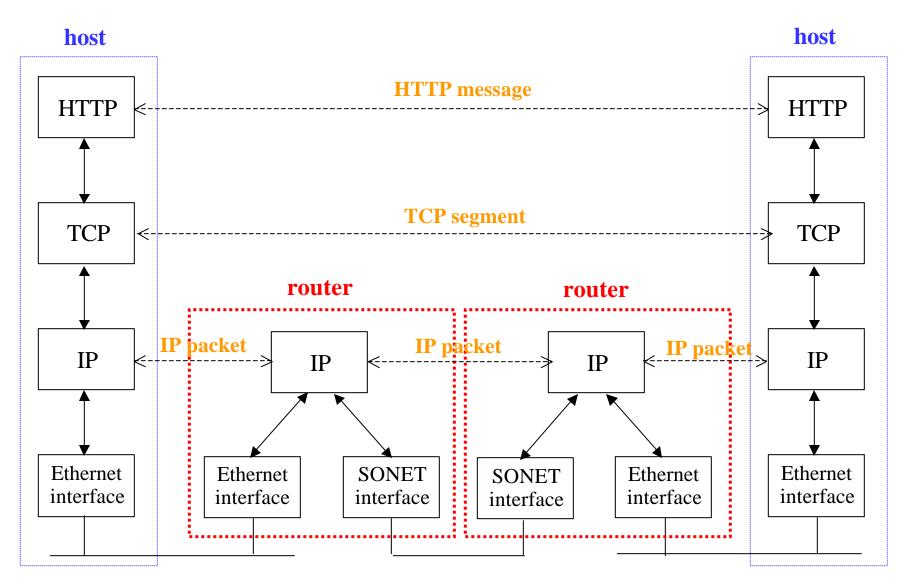
- Generating reports for customers and internal groups
- Diagnosing performance and reliability problems
- Tuning the configuration of the network to the traffic
- Planning outlay of new equipment (routers, proxies, links)
- Science (discovery)
 - End-to-end characteristics of delay, throughput, and loss
 - Verification of models of TCP congestion control
 - Workload models capturing the behavior of Web users
 - Understanding self-similarity/multi-fractal traffic
- We focus helping operators run the network, and assume we have access to the network infrastructure

Measurement Challenges for Operators

• Network-wide view


- Crucial for evaluating control actions
- Multiple kinds of data from multiple locations
- Large scale
 - Large number of high-speed links and routers
 - Large volume of measurement data
- Poor state-of-the-art
 - Working within existing protocols and products
 - Technology not designed with measurement in mind
- The "do no harm" principle
 - Don't degrade router performance
 - Don't require disabling key router features
 - Don't overload the network with measurement data

Overview of IP Protocol Suite

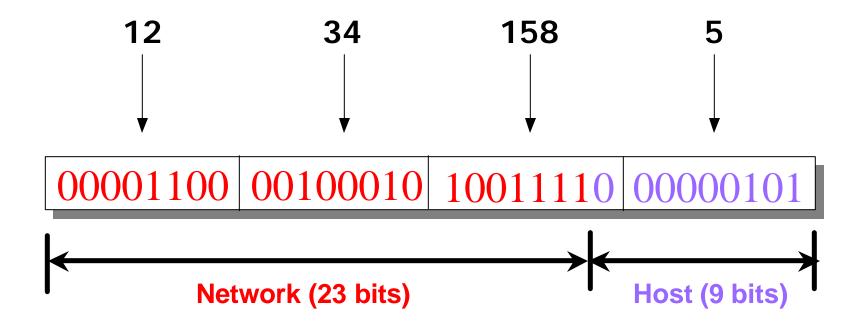

IP Protocols: Outline

- Internet Protocol (IP)
 - IP best-effort packet delivery service
 - IP addressing and packet forwarding
- Transmission Control Protocol (TCP)
 - Ordered reliable byte stream service at end hosts
 - Port numbers to identify the communicating applications
 - Congestion control to adapt to network load
- User Datagram Protocol (UDP)
- Domain Name System (DNS)
 - Translation between IP addresses and names
- Application-layer protocols (HTTP, FTP, SMTP,...)
 - Messages between end-host applications

Layering in the IP Protocols

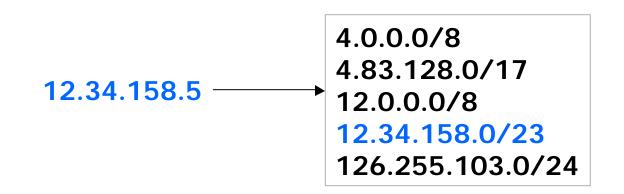
IP Suite: End Hosts vs. Routers

Operator only has access to info *inside* the network


IP Connectionless Paradigm

- No error detection or correction for packet data
 Higher-level protocol can provide error checking
- Successive packets may not follow the same path
 Not a problem as long as packets reach the destination
- Packets can be delivered out-of-order
 - Receiver can put packets back in order (if necessary)
- Packets may be lost or arbitrarily delayed
 Sondar can could the maskets ensity (if desired)
 - Sender can send the packets again (if desired)
- No network congestion control (beyond "drop")
 - Sender can slow down in response to loss or delay

Hard to tell the whole story from network measurements


IP Addressing

- 32-bit number in dotted-quad notation (12.34.158.5)
- Divided into network & host portions (left and right)
- 12.34.158.0/23 is a 23-bit prefix with 2⁹ addresses

Classless InterDomain Routing (CIDR)

- Prefixes are key to Internet scalability
 - Address allocation by ARIN/RIPE/APNIC and by ISPs
 - Routing protocols and packet forwarding based on prefixes
 - Today, routing tables contain ~100,000 prefixes
- Forwarding based on the longest prefix match
 - Destination-based forwarding of IP packets
 - Forwarding table maps prefix to next-hop link(s)
 - Router identifies the longest matching prefix

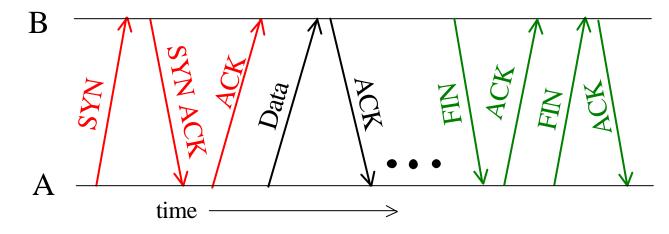


IP Addresses: Ambiguity

- Dynamic IP address assignment (DHCP)
 - Single client may have multiple addresses over time
 - Address may correspond to multiple clients over time
- Shared machines
 - Multiple users on a shared compute server
 - Transfers traveling through proxies and firewalls
 - Multiple Web sites hosted on a single machine
- Replicated sites
 - Multiple machines hosting a single (popular) Web site
- Addresses do not correspond to geographic location
 - Similar prefix does not necessarily imply nearby hosts
 - Single prefix may span hosts in large geographic region
- Source IP address may be spoofed (e.g., DoS attack)

Transmission Control Protocol (TCP)

- Communication service (socket)
 - Ordered, reliable byte stream for applications
 - Simultaneous transmission in both directions
- Key mechanisms at end hosts
 - Retransmission of lost or corrupted IP packets
 - Discard duplicate packets and reorder out-of-order packets
 - Flow control to avoid overloading the receiver buffer
 - Congestion control to adapt sending rate to network load


Source and Destination Port Numbers

- Motivation for port numbers
 - Unique identifier of the TCP connection on each end
 - Necessary to (de)multiplex packets at the end-points
- Assigning port numbers
 - Port numbers below 1024 are assigned by IANA
 - Well-known port numbers for common applications (http://www.iana.org/assignments/port-numbers)
- Web client contacting a web server
 - Browser click results in creation of a TCP socket
 - Client machine assigns an available port (>=1024)
 - Client machine requests a connection with the server
 - Open TCP connection to port 80 at the server

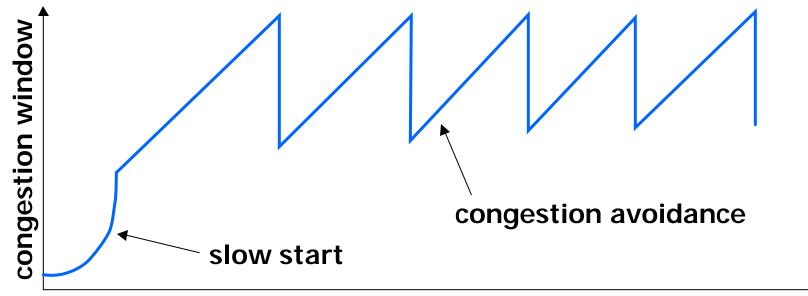
Port Numbers: Ambiguity

- Well-known port numbers (1023 and lower)
 - Use of non-traditional ports (e.g., 8000 and 8080 for Web)
 - Reuse of well-known port numbers by other applications
- Unreserved port number (1024 and higher)
 - De facto ports for new applications (Napster, RealAudio)
 - Peer-to-peer transfers; transfers between DDoS attackers
 - Changing de facto ports to evade filtering (Napster)
- Dynamic port assignment
 - FTP data transfers (port #s conveyed in control stream)
 - RTSP multimedia transfers (port #s for RTP stream(s))

Opening and Closing a TCP Connection

Three-way handshake to establish connection

- Host A sends a SYN to the host B
- Host B returns a SYN and acknowledgement
- Host A sends an ACK to acknowledge the SYN ACK
- Four-way handshake to close the connection
 - Finish (FIN) to close and receive remaining bytes , or
 - Reset (RST) to close and not receive remaining bytes


Lost and Corrupted Packets

- Detecting corrupted and lost packets
 - Error detection via checksum on header and data
 - Sender sends packet, sets timeout, and waits for ACK
 - Receiver sends ACKs for received packets
 - Sender infers loss from timeout or duplicate ACKs
- Retransmission by sender
 - Sender retransmits lost/corrupted packets
 - Receiver reassembles and reorders packets
 - Receiver discards corrupted and duplicated packets

Packet loss degrades application performance

TCP Flow and Congestion Control

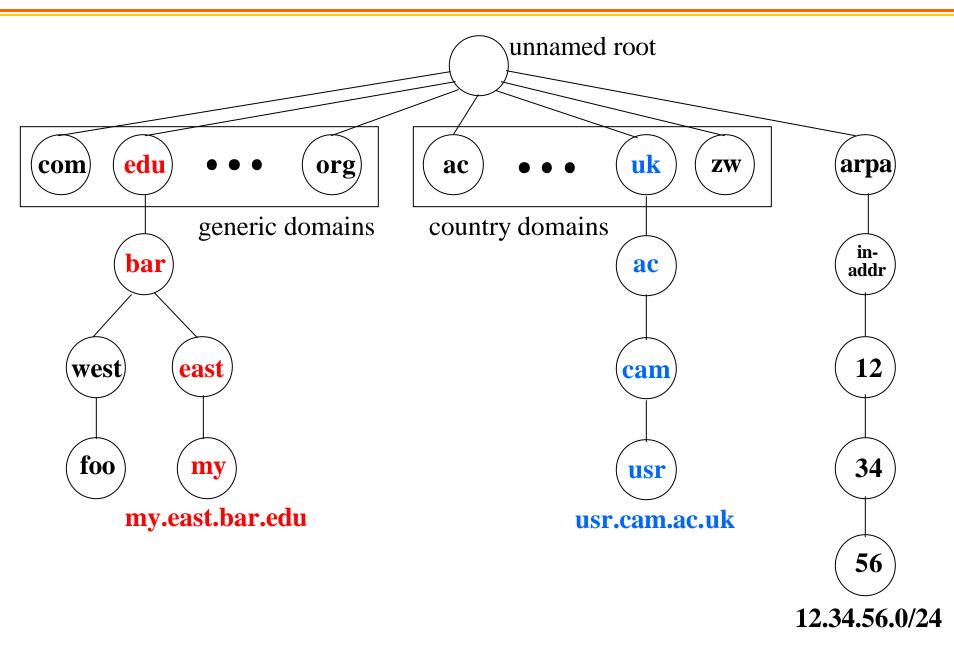
- Window-based flow control
 - Sender limits number of outstanding bytes (window size)
 - Receiver window ensures data does not overflow receiver
- Adapting to network congestion
 - Congestion window tries to avoid overloading the network (increase with successful delivery, decrease with loss)
 - TCP connection starts with small initial congestion window

Many Factors Limiting TCP Performance

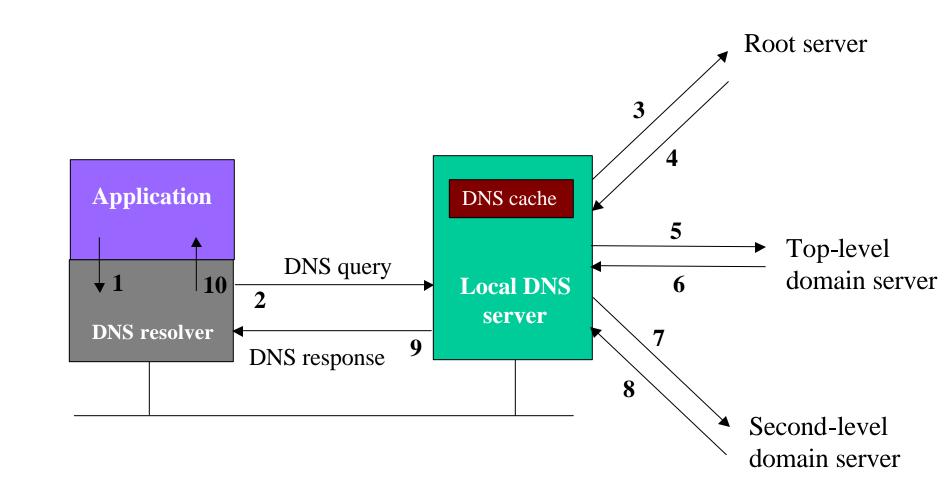
- Round-trip time (RTT)
 - Two-way delay between the sender and receiver
- Receiver window size
 - Buffer space available at the receiver
- Initial congestion window
 - Low throughput for short transfers
- Delay for detecting packet loss
 - Timeout value based on round-trip time
- Packet loss rate
 - Small congestion window under high loss

Hard to pinpoint the key factor limiting performance

User Datagram Protocol (UDP)

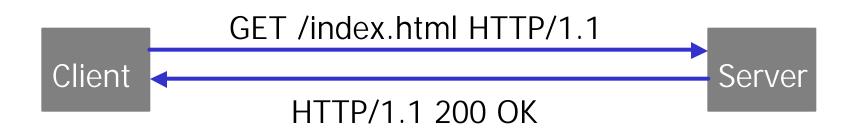

- Some applications do not want or need TCP
 - Avoid overhead of opening/closing a connection
 - Avoid recovery from lost/corrupted packets
 - Avoid sender adaptation to loss/congestion
- Example applications that use UDP
 - Multimedia streaming applications
 - Domain Name System (DNS) queries/replies
 - Delivery of measurement data (inband, unreliably!!!)
- Dealing with the growth in UDP traffic
 - Interference with TCP performance
 - Pressure to apply congestion control
 - Future routers may enforce "TCP-friendly" behavior

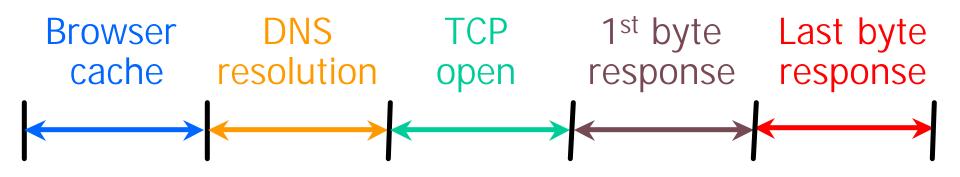
Domain Name System (DNS)


• Properties of DNS

- Hierarchical name space divided into zones
- Translation of names to/from IP addresses
- Distributed over a collection of DNS servers
- Client application
 - Extract server name (e.g., from the URL)
 - Invoke system call to trigger DNS resolver code
 - E.g., gethostbyname() on "www.foo.com"
- Server application
 - Extract client IP address from socket
 - Optionally invoke system call to translate into name
 - E.g., gethostbyaddr() on "12.34.158.5"

Domain Name System


DNS Resolver and Local DNS Server


Caching based on a time-to-live (TTL) assigned by the DNS server responsible for the host name to reduce latency in DNS translation.

Application-Layer Protocols

- Messages exchanged between applications
 - Syntax and semantics of the messages between hosts
 - Tailored to the specific application (e.g., Web, e-mail)
 - Messages transferred over transport connection (e.g., TCP)
- Popular application-layer protocols
 - Telnet, FTP, SMTP, NNTP, HTTP, ...

Example: HTTP Delay

Sources of variability of delay

- Browser cache hit/miss, need for cache revalidation
- DNS cache hit/miss, multiple DNS servers, errors
- Packet loss, high RTT, server accept queue
- RTT, busy server, CPU overhead (e.g., CGI script)
- Response size, receive buffer size, congestion
- ... downloading embedded image(s) on the page

Hard to Tell Why Performance Stinks

- Multiple protocols
 - IP, TCP, DNS, and HTTP
- Multiple systems
 - Browser and Web servers, Web proxies and DNS servers
- Multiple domains
 - Numerous routers/links along request and response paths
 - Traffic traversing multiple autonomous systems en route
- No repeatability
 - Subsequent transfers may experience good performance
 - DNS caching, Web caching, different Web server replica, different routes to/from server, transient congestion, ...

How to "finger-point" to diagnose problems?

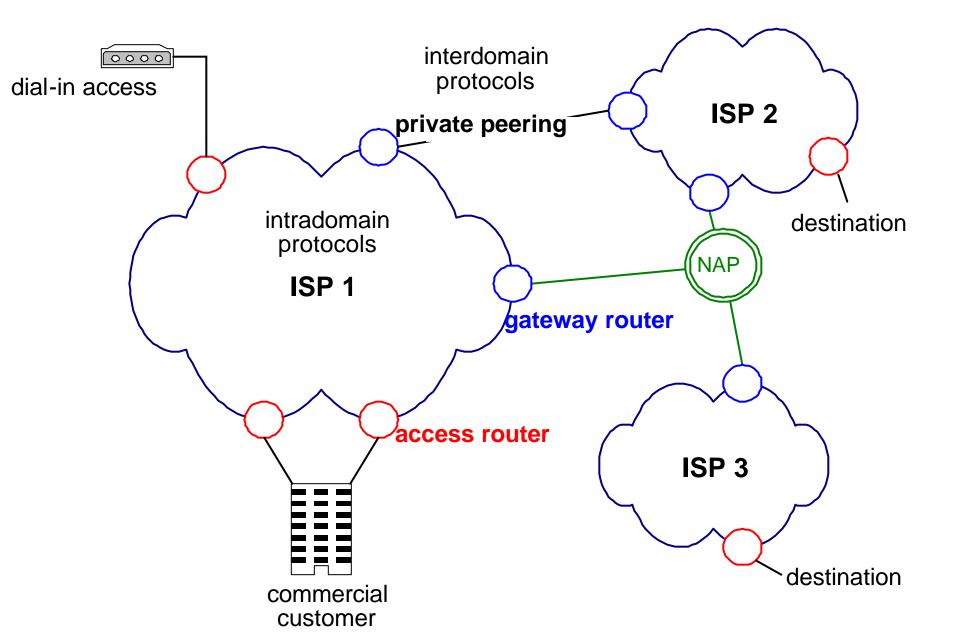
ISP Background and Network Operations

ISP Background: Outline

- Autonomous Systems (ASes)
 - Definition of an Autonomous System
 - Peer, provider, and customer relationships
- Internet Service Provider architecture
 - Example backbone network
 - Logical view of a backbone
 - Architecture of a high-end router
 - Different roles for routers
- Routing protocols
 - Border Gateway Protocol (BGP)
 - Interior Gateway Protocols (IGPs)

Internet Architecture

- Divided into Autonomous Systems
 - Distinct regions of administrative control (~11,500)
 - Set of routers and links managed by a single "institution"
 - Service provider, company, university, ...
- Hierarchy of Autonomous Systems
 - Large, tier-1 provider with a nationwide backbone
 - Medium-sized regional provider with smaller backbone
 - Small network run by a single company or university
- Interaction between Autonomous Systems
 - Internal topology is not shared between ASes
 - ... but, neighboring ASes interact to coordinate routing

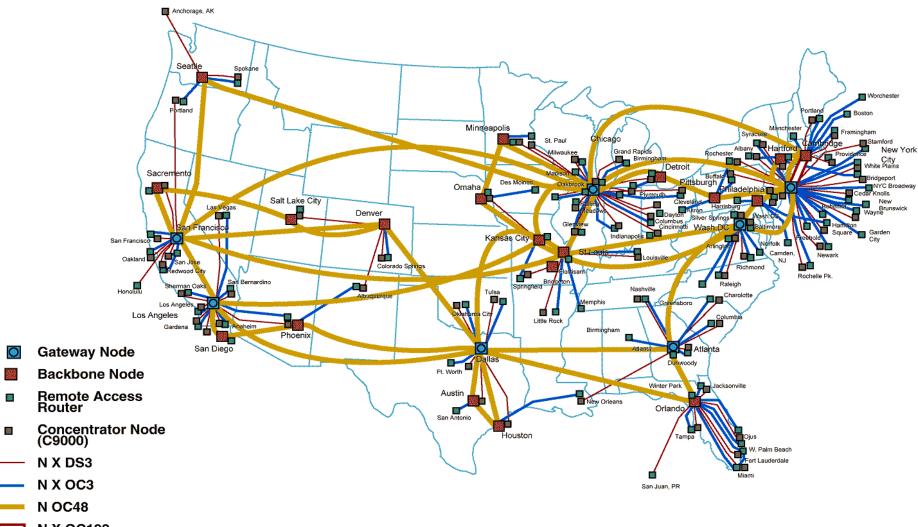

What is an "Institution"?

Not equivalent to an AS

- Many institutions span multiple autonomous systems
- Some institutions do not have their own AS number
- Ownership of an AS may be hard to pinpoint (*whois*)
- Not equivalent to a block of IP addresses (prefix)
 - Many institutions have multiple (non-contiguous) prefixes
 - Some institutions are a small part of a larger address block
 - Ownership of a prefix may be hard to pinpoint (whois)
- Not equivalent to a domain name (att.com)
 - Some sites may be hosted by other institutions
 - Some institutions have multiple domain names (att.net)

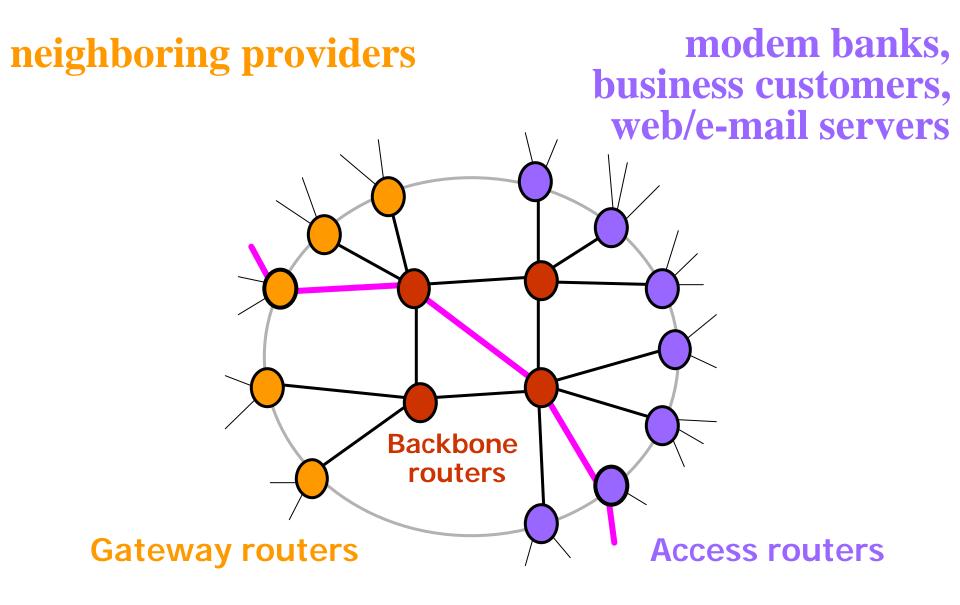
Attributing traffic/performance to an institution is hard

Connections Between ASes

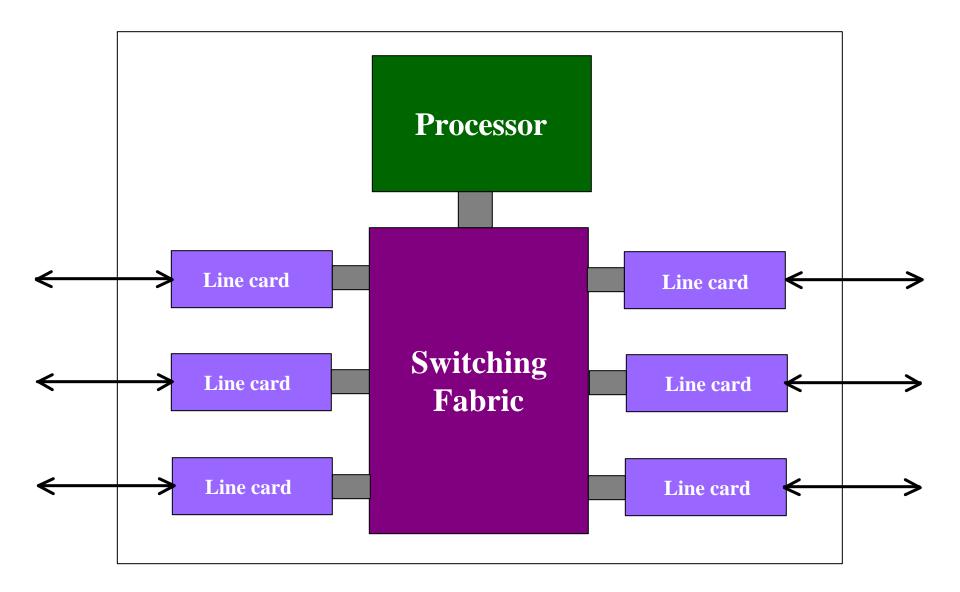

Connecting to Neighboring ASes

• Public peering

- Network Access Points (e.g., MAE East and MAE West)
- Public location for connecting routers from different ISPs
- Routers exchange both data and routing information
- Private peering
 - Private connections between two peers
 - Private peers exchange traffic between their customers
 - Private peers must exchange similar traffic volumes
- Transit networks
 - Customer pays its provider for transit service
 - Improve performance and reach more addresses
 - So-called "tier-1" providers do not receive transit services



AT&T IP BACKBONE NETWORK



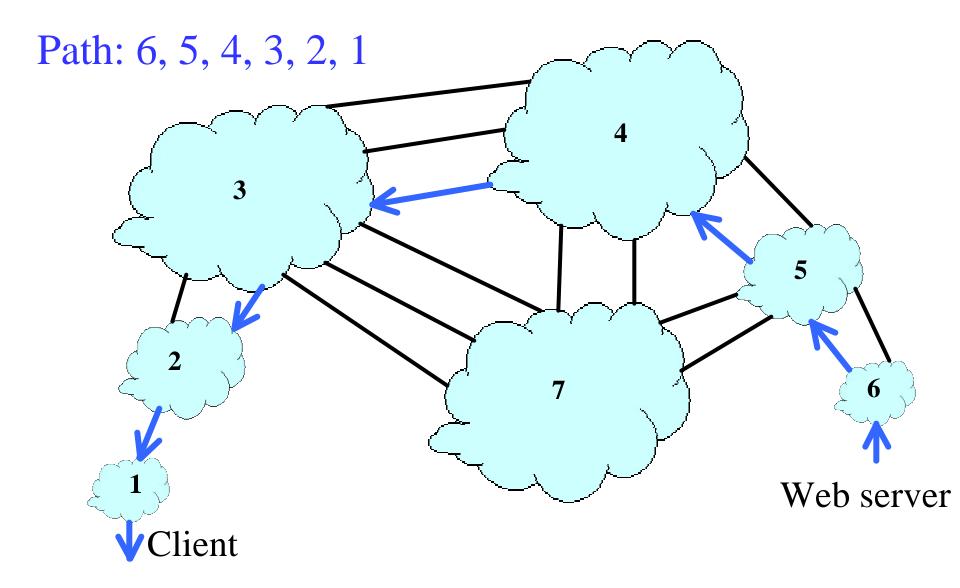
N X OC192

Internet Service Provider Backbone

Inside a High-End Router

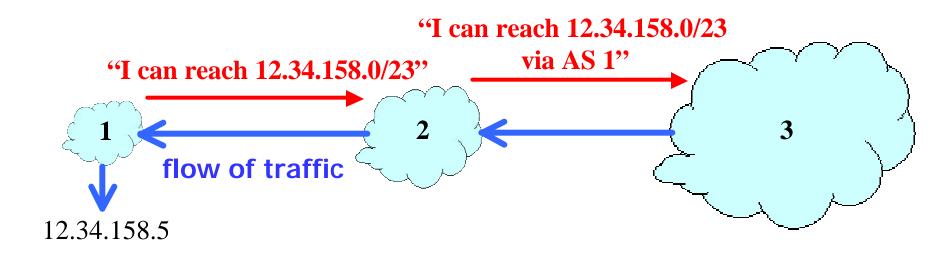
Components of a High-End Router

Route processor

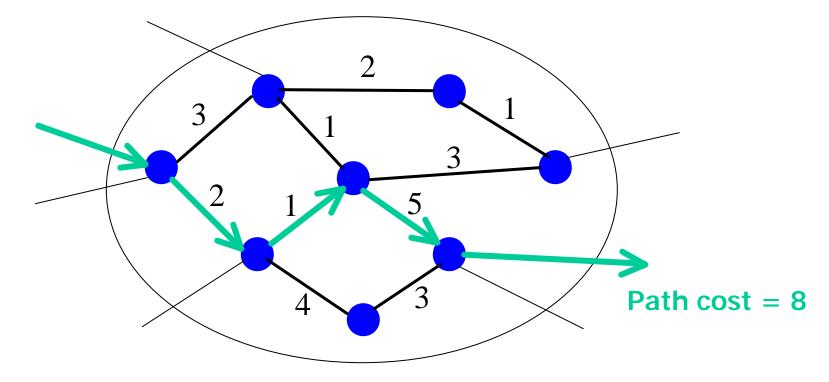

- Implementation of the various routing protocols
- Creation of forwarding table for the line cards
- Command-line interface for network operators
- Handling of packets directed to the Loopback address
- Handling of "special packets" (IP options, expired TTL)
- Switching fabric
 - Forwarding of packet from input to output interface
- Line cards
 - Link-layer protocol to convert to/from IP packets
 - Packet handling (filtering, route look-up, buffering, rate limiting, ToS marking, link scheduling,...)
 - Transfer of packet to/from the switching fabric

Three Roles for Routers

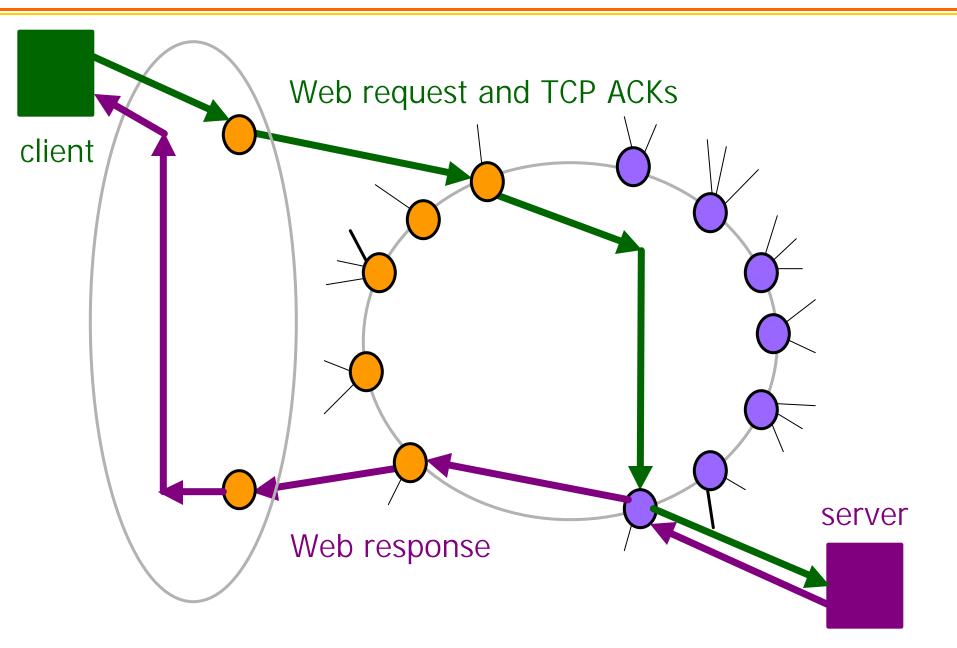
• Access Routers


- Terminate a large number of customer links
- Filter packets based on customer addresses
- Enforce traffic limits and mark packets for QoS
- Backbone Routers
 - Connect between and within cities
 - High-speed switching in the core
- Gateway Routers
 - Connect to other providers and public access points
 - Implement routing policies for peering relationships

Interdomain Routing (Between ASes)


Border Gateway Protocol (BGP)

- ASes exchange info about who they can reach
- Update messages exchanged over a TCP connection
- Local policies for path selection (which to use?)
- Local policies for route propagation (who to tell?)
- Policies configured by the AS's network operator



Interior Gateway Protocol (Within an AS)

- Routers flood information to learn the topology
- Routers determine "next hop" to reach other routers
- Path selection based on link weights (shortest path)
- Link weights configured by the network operator

Asymmetric Routes: Hot-Potato Routing

Network Operations: Outline

- Operating a network
 - Control loop, timescales, and practical challenges
- Operator tasks
 - Reporting, troubleshooting, traffic engineering, provisioning, capacity planning, architecture
- Network model
 - Network state and data sources
- Conclusions

Operating a Network

Control loop

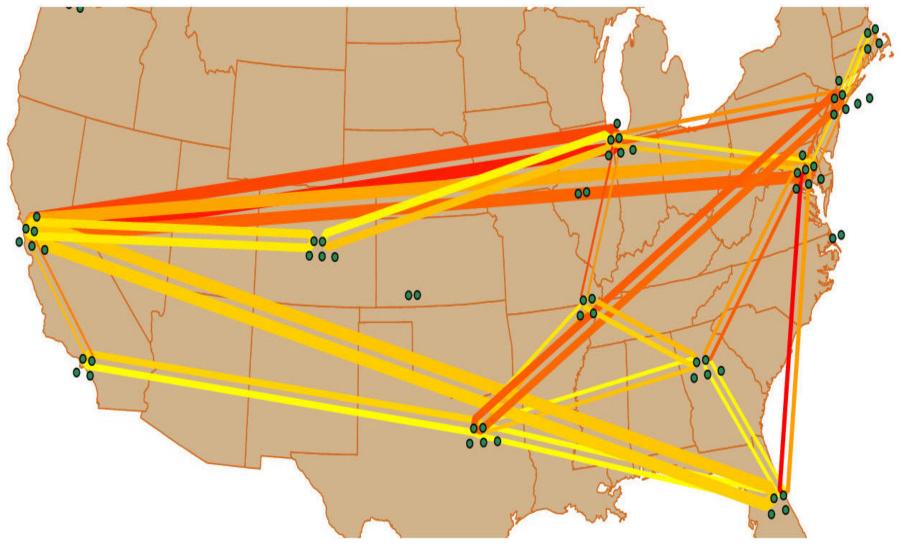
- Detect: note the symptoms
- Diagnose: identify the illness
- Fix: select and dispense the medicine
- Key ingredients
 - Measurement of the traffic and the network status
 - Analysis and modeling of the measurement data
 - Modeling of the network control mechanism ("what if")

• Time scales

- Minutes to hours
- Days to weeks
- Months to years

Practical Challenges

- Increase in the scale of the network
 - Link speeds, # of routers/links, # of peering points
 - Large network has 100s of routers and 1000s of links
- Significant traffic fluctuations
 - Time-of-day changes and addition of new customers/peers
 - Special events (Olympics) and new applications (Napster)
 - Difficult to forecast traffic load before designing topology
- Market demand for stringent network performance
 - Service level agreements (SLAs), high-quality voice-over-IP
- Increase in network capability & feature complexity
 - New services (Quality of Service, Virtual Private Networks)
 - New routing protocols (MPLS, multicast)

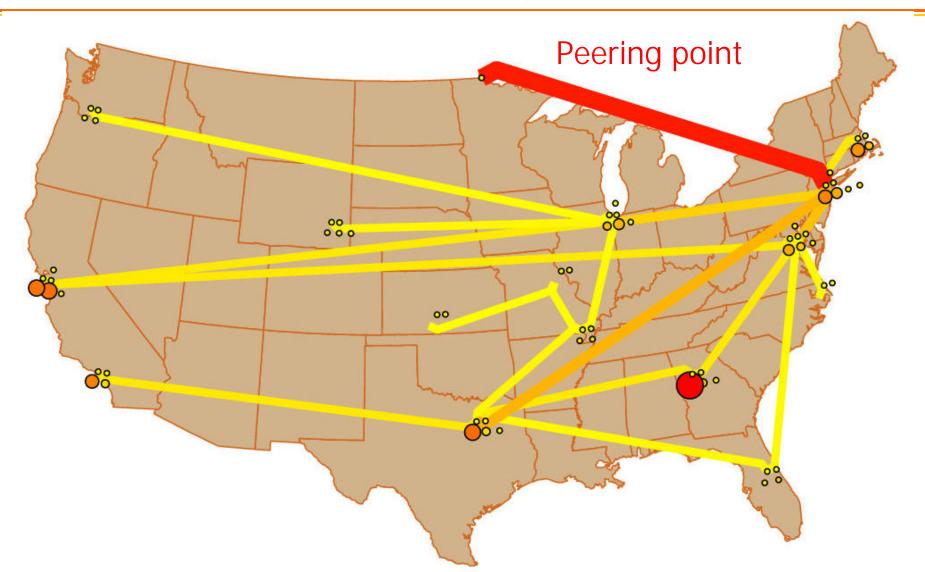

Network Operations Tasks

- Reporting of network-wide statistics
 - Generating basic information about usage and reliability
- Performance/reliability troubleshooting
 - Detecting and diagnosing anomalous events
- Traffic engineering
 - Adjusting network configuration to the prevailing traffic
- Capacity planning
 - Deciding where and when to install new equipment
- Provisioning of existing network
 - Process of adding new customers/peers, routers/links, etc.
- Selecting and testing new network architectures
 - MPLS routing, multicast, monitoring, quality-of-service, ...

Basic Reporting

- Producing basic statistics about the network
 - For business purposes, network planning, ad hoc studies
- Examples
 - Proportion of transit vs. customer-customer traffic
 - Total volume of traffic sent to/from each private peer
 - Mixture of traffic by application (Web, Napster, etc.)
 - Mixture of traffic to/from individual customers
 - Usage, loss, and reliability trends for each link
- Requirements
 - Network-wide view of basic traffic and reliability statistics
 - Ability to "slice and dice" measurements in different ways (e.g., by application, by customer, by peer, by link type)

Topology and Link Utilization

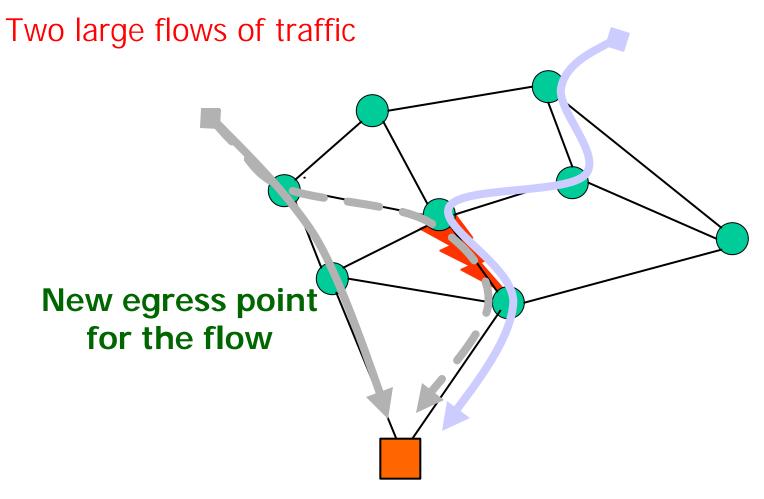


Utilization: link color (high to low)

Troubleshooting

- Detecting and diagnosing problems
 - Recognizing and explaining anomalous events
- Examples
 - Why a backbone link is suddenly overloaded
 - Why the route to a destination prefix is flapping
 - Why DNS queries are failing with high probability
 - Why a route processor has high CPU utilization
 - Why a customer cannot reach certain Web sites
- Requirements
 - Network-wide view of many protocols and systems
 - Diverse measurements at different protocol levels
 - Thresholds for isolating significant phenomena

Traffic Flow Through Backbone



Color/size of node: proportional to traffic to this router (high to low) Color/size of link: proportional to traffic carried (high to low)

Traffic Engineering

- Adjusting resource allocation policies
 - Path selection, buffer management, and link scheduling
- Examples
 - Changing IGP weights to divert traffic from congested links
 - Changing BGP policies to balance load on peering links
 - Changing RED parameters to improve TCP throughput
 - Changing WFQ weights to reduce delay for "gold" traffic
- Requirements
 - Network-wide view of the traffic carried in the backbone
 - Timely view of the network topology and configuration
 - Accurate models to predict impact of control operations (e.g., the impact of RED parameters on TCP throughput)

BGP Policy Change

Multi-homed customer

Capacity Planning

- Deciding whether to buy/install new equipment
 - What? Where? When?
- Examples
 - Where to put the next backbone router
 - When to upgrade a peering link to higher capacity
 - Whether to add/remove a particular private peer
 - Whether the network can accommodate a new customer
 - Whether to install a caching proxy for cable modems
- Requirements
 - Projections of future traffic patterns from measurements
 - Cost estimates for buying/deploying the new equipment
 - Model of the potential impact of the change (e.g., latency reduction and bandwidth savings from a caching proxy)

Network State: Not Just Traffic Measurement

- Topology
 - Routers and links, and their connectivity and capacity
 - BGP sessions with neighbors and within the backbone
- Configuration
 - Path selection (e.g., OSPF weights, BGP policies)
 - Link scheduling (e.g., FIFO or WFQ weights)
 - Buffer management (e.g., drop-tail or RED parameters)
 - Packet filters (e.g., ingress filters to prevent DoS)
- Interdomain routing
 - Reachability to neighboring domains (e.g., BGP updates)

Necessary for a network-wide view for the operator

Network State: Data Sources

- Router configuration files
 - Router name, OS version, IP address, running processes
 - Individual interfaces and their location in the router
 - Set of commands applied against the router
- Polling/trapping of SNMP data
 - Up/down status of individual links, sessions, etc.
- Router forwarding tables
 - Next-hop link(s) for each destination prefix
- BGP routing tables or BGP monitors
 - Routing choices advertised by other domains

Tutorial focuses mainly on *traffic measurement* data.

Example: Router Configuration File

- Language with hundreds of different commands
- Cisco IOS is a de facto standard config language
- Sections for interfaces, routing protocols, filters, etc.

version 12.0	interface POS6/0
hostname MyRouter	description MyBackboneLink
!	ip address 12.123.36.73 255.255.255.252
interface Loopback0	ip ospf cost 1024
ip address 12.123.37.250 255.255.255.255	!
!	router ospf 2
interface Serial9/1/0/4:0	network 12.123.36.72 0.0.0.3 area 9
description MyT1Customer	network 12.123.37.250 0.0.0.0 area 9
bandwidth 1536	1
ip address 12.125.133.89 255.255.255.252	access-list 10 permit 12.125.133.88 0.0.0.3
ip access-group 10 in	access-list 10 permit 135.205.0.0 0.0.255.255
!	ip route 135.205.0.0 255.255.0.0 Serial9/1/0/4:0

Example: Forwarding Table ("show ip cef")

Prefix 4.20.90.120/29 4.20.90.128/29 4.24.7.104/30 4.36.100.0/23 6.0.0/8 9.2.0.0/16 9.3.4.0/24 9.3.5.0/24 9.20.0.0/17

Next Hop 12.123.28.134 12.123.28.130 12.123.28.130 12.123.28.134 192.205.32.126 12.123.28.134 12.123.28.130 192.205.32.126 12.123.28.130 12.123.28.130 192.205.32.178

Interface **POS7/0 POS6/0 POS6/0 POS7/0 ATM5/0.1 POS7/0 POS6/0 ATM5/0.1 POS6/0 POS6/0 POS0/3**

Random or hash-based tie-break to select among multiple next-hops

Example: BGP Table ("show ip bgp" at RouteViews)

Network	Next Hop	Metric Locl	Prf Weight	Path
* 3.0.0.0	205.215.45.50		0	4006 701 80 i
*	167.142.3.6		0	5056 701 80 i
*	157.22.9.7		0	715 1 701 80 i
*	195.219.96.239		0	8297 6453 701 80 i
*	195.211.29.254		0	5409 6667 6427 3356 701 80 i
*>	12.127.0.249		0	7018 701 80 i
*	213.200.87.254	929	0	3257 701 80 i
* 9.184.112.0/20	205.215.45.50		0	4006 6461 3786 i
*	195.66.225.254		0	5459 6461 3786 i
*>	203.62.248.4		0	1221 3786 i
*	167.142.3.6		0	5056 6461 6461 3786 i
*	195.219.96.239		0	8297 6461 3786 i
*	195.211.29.254		0	5409 6461 3786 i

AS 80 is General Electric, AS 701 is UUNET, AS 7018 is AT&T AS 3786 is DACOM (Korea), AS 1221 is Telstra

- Operating IP networks is hard
 - Basic design philosophy of the IP protocols
 - Division of Internet into multiple (competing) ASes
- Measurement and models play a crucial role
 - Constructing a real-time, network-wide view
 - Detecting, diagnosing, and fixing problems
- Next two 1.5-hour parts of the tutorial
 - Overview of the key measurement techniques
- Final 1.5-hour part of the tutorial
 - Measurement and models for traffic engineering